IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06616-y.html
   My bibliography  Save this article

Artificial intelligence and machine learning for disaster prediction: a scientometric analysis of highly cited papers

Author

Listed:
  • Mallikarjun Kappi

    (Government First Grade College)

  • B. Mallikarjuna

    (Library and Information Centre, Government First Grade College for Women)

Abstract

This study conducts an analysis of artificial intelligence (AI) and machine learning (ML) applications in natural disaster prediction using a scientometric approach. The Web of Science Core Collection served as the primary data source, yielding 38,456 records spanning from 2003 to 2022. The analysis concentrated on highly influential research, defined by papers garnering 100 or more citations, resulting in a final set of 1,637 publications. VOSviewer software facilitated the exploration of collaboration patterns among authors, institutions, and countries, along with the identification of emerging research topics and the most impactful articles. These highly cited papers were distributed across various sources (625). A total of 443,502 citations were counted, with an average of 270.92 citations per document. Interestingly, the average annual citation growth rate exhibited a negative trend (-1.02%), suggesting a potential shift in citation patterns over time. The average document age of 6.9 years indicates that the majority of the research is relatively recent. Collaboration emerges as a prominent feature within the field, with an average of 5.09 co-authors per document and 46.55% of collaborations being international. This underscores the collaborative nature inherent in research within this domain. Scholarly articles (1263) represent the predominant document type, followed by reviews (323), indicative of the field’s solid foundation in peer-reviewed literature. The study’s findings hold significant implications for future research and practical applications, identifying gaps in the literature and underscoring the necessity for further exploration in developing AI and ML models tailored to specific types of natural disasters, as well as assessing these models in real-world scenarios. International collaboration and interdisciplinary approaches are highlighted as pivotal components in advancing this critical field. While providing valuable insights, this approach acknowledges limitations associated with its focus on highly cited papers and a single database. Future research could address these limitations by incorporating additional databases, employing broader search criteria, and utilising alternative methodologies to attain a more comprehensive understanding of the evolving research landscape.

Suggested Citation

  • Mallikarjun Kappi & B. Mallikarjuna, 2024. "Artificial intelligence and machine learning for disaster prediction: a scientometric analysis of highly cited papers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10443-10463, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06616-y
    DOI: 10.1007/s11069-024-06616-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06616-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06616-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    2. Beth Barnes & Sarah Dunn & Sean Wilkinson, 2019. "Natural hazards, disaster management and simulation: a bibliometric analysis of keyword searches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 813-840, June.
    3. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    2. Jorge Sepúlveda-Velásquez & Pablo Tapia-Griñen & Boris Pastén-Henríquez, 2023. "Financial effects of natural disasters: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2691-2710, September.
    3. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    4. Yingjin Song & Ruiyi Li & Guanyi Chen & Beibei Yan & Lei Zhong & Yuxin Wang & Yihang Li & Jinlei Li & Yingxiu Zhang, 2021. "Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    5. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    6. Niccolò Comerio & Fernanda Strozzi, 2019. "Tourism and its economic impact: A literature review using bibliometric tools," Tourism Economics, , vol. 25(1), pages 109-131, February.
    7. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    8. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    9. M. M. Ahmed & A. Sadoon & M. T. Bassuoni & A. Ghazy, 2024. "Utilizing Agricultural Residues from Hot and Cold Climates as Sustainable SCMs for Low-Carbon Concrete," Sustainability, MDPI, vol. 16(23), pages 1-37, December.
    10. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    11. Muhammad Farooq Islam & Ozge Can, 2024. "Integrating digital and sustainable entrepreneurship through business models: a bibliometric analysis," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 14(1), pages 1-18, December.
    12. Urša Golob & Mark A. P. Davies & Joachim Kernstock & Shaun M. Powell, 2020. "Trending topics plus future challenges and opportunities in brand management," Journal of Brand Management, Palgrave Macmillan, vol. 27(2), pages 123-129, March.
    13. Natalya Ivanova & Ekaterina Zolotova, 2023. "Landolt Indicator Values in Modern Research: A Review," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    14. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    15. Shobhit Kakaria & Aline Simonetti & Enrique Bigne, 2024. "Interaction between extrinsic and intrinsic online review cues: perspectives from cue utilization theory," Electronic Commerce Research, Springer, vol. 24(4), pages 2469-2497, December.
    16. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    17. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    18. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    19. Juan F. Prados-Castillo & Miguel Ángel Solano-Sánchez & Pilar Guaita Fernández & José Manuel Guaita Martínez, 2023. "Potential of the Crypto Economy in Financial Management and Fundraising for Tourism," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    20. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06616-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.