Author
Listed:
- Fang Wang
(Nanjing Hydraulic Research Institute)
- Hongen Li
(Nanjing Hydraulic Research Institute
State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering)
- Jinbao Sheng
(Nanjing Hydraulic Research Institute
State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering)
- Li Yuan
(Hohai University)
- Yuxuan Pan
(Hohai University)
- Jianguo Zhao
(Nanjing Hydraulic Research Institute)
Abstract
Earthen dams are exposed to complex environments where their safety is often affected by multiple uncertain risks. A Bayesian network (BN) is often used to analyze the dam failure risk, which is an effective tool for this issue as its excellent ability in representing uncertainty and reasoning. The validity of the BN model is strongly dependent on the quality of the sample data, making convincing modeling rationale a challenge. There has been a lack of systematic analysis of the dam failure data of China, resulting in limited exploration of the potential associations between risk factors. In this paper, we established a comprehensive database containing various dam failure cases in China. Herein, historical dam failure statistics are used to develop BN models for risk analysis of earthen dams in China. In order to unleash the value of the historical data, we established a Bayesian network through the Causal Loop Diagrams (CLD) based on the nonlinear causal analysis. We determined the conditional probabilities using Word Frequency Analysis (WFA). By comparing with the Bayesian Learning results, the modeling method of BN proposed in our study has apparent advantages. According to the BN model established in this paper, the probabilities of dam failure due to seepage damage, overtopping, and structural instability are estimated to be 22.1%, 58.1%, and 7.9%, respectively. In addition, we presented a demonstration of the inference process for the dam failure path, which will offer valuable insights to dam safety practitioners during their decision-making process.
Suggested Citation
Fang Wang & Hongen Li & Jinbao Sheng & Li Yuan & Yuxuan Pan & Jianguo Zhao, 2023.
"A Bayesian method for dam failure risk analysis using causal loop diagrams and word frequency analysis,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2159-2177, December.
Handle:
RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06196-3
DOI: 10.1007/s11069-023-06196-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06196-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.