Author
Abstract
Deprived settlements, usually referred to as slums, are often located in hazardous areas. However, there have been very few studies to examine this notion. In this study, we leverage the advancements in open geospatial data, earth observation (EO), and machine learning to create a multi-hazard susceptibility index and a transferrable disaster risk approach to be adapted in low- and middle-income country (LMIC) cities, with low-cost methods. Specifically, we identify multi-hazards in Nairobi's selected case study area and construct a susceptibility index. Then, we test the predictability of deprived settlements using the multi-hazard susceptibility index in comparison with EO texture-based methods. Lastly, we survey 100 households in two deprived settlements (typical and atypical slums) in Nairobi and use the survey outcomes to validate the multi-hazard susceptibility index. To test the assumption that deprived areas are dominantly located in areas with higher susceptibility to multiple hazards, we contrast morphologically identified deprived settlements with non-deprived settlements. We find that deprived settlements are generally more exposed to hazards. However, there are variations between central and peripheral settlements. In testing the predictability of deprivation using multi-hazards, the multi-hazard-based model performs better for deprived settlements than for other classes. In contrast, the texture-based model is better at classifying all types of morphological settlements. Lastly, by contrasting the survey outcomes to the household interviews, we conclude that proxies used for the multi-hazard susceptibility index adequately capture the hazards. However, more localized proxies can be used to improve the index performance.
Suggested Citation
Priscilla Kabiru & Monika Kuffer & Richard Sliuzas & Sabine Vanhuysse, 2023.
"The relationship between multiple hazards and deprivation using open geospatial data and machine learning,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(2), pages 907-941, November.
Handle:
RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-023-05897-z
DOI: 10.1007/s11069-023-05897-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:2:d:10.1007_s11069-023-05897-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.