IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06048-0.html
   My bibliography  Save this article

Unprecedented rainfall index for reducing fatalities caused by sediment-related disasters

Author

Listed:
  • Ken′ichirou Kosugi

    (Kyoto University)

Abstract

This study evaluated effectiveness of the unprecedented rainfall index, TP, proposed by Kosugi (2022) in achieving appropriate evacuation actions by municipalities and residents for reducing victims caused by rainfall-induced landslides and debris flows. TP is defined as the time stamp representing the situation that “current rainfall is the largest since TP”; namely, if we go back to time before TP, the rainfall at the current time is of a magnitude that has been experienced in the past (i.e., the situation is within the historical range) in every evaluation criterion used in analyses. In other words, the rainfall at the current time is of a magnitude never experienced in the period from TP through the present for at least one criterion. TP was computed for all disasters that caused death and missing of people in Japan in 2021: the Atami, Unzen, and Okaya disasters. In every disaster, at the time of the landslide and debris flow occurrences, TP reached the beginning of rainfall record, indicating that the rainfall reached a magnitude never experienced in the past. Based on these results, it was confirmed that (1) TP time series has a large potential to reduce the normalcy bias in all 3 disasters studied, (2) for evaluating anomaly in rainfall, rainfall features should be analyzed based on various evaluation criteria, and (3) the time of past land alteration at an individual location, such as an occurrence time of historical storm event and a construction time of embankment slope, might be set as a TP threshold.

Suggested Citation

  • Ken′ichirou Kosugi, 2023. "Unprecedented rainfall index for reducing fatalities caused by sediment-related disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1259-1280, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06048-0
    DOI: 10.1007/s11069-023-06048-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06048-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06048-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prodip Mandal & Shraban Sarkar, 2021. "Estimation of rainfall threshold for the early warning of shallow landslides along National Highway-10 in Darjeeling Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2455-2480, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanmoy Das & Vansittee Dilli Rao & Deepankar Choudhury, 2022. "Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 751-785, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06048-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.