IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06036-4.html
   My bibliography  Save this article

Study on the failure characteristics of overburden and the evolution law of seepage field in deep buried thick coal seam under aquifers

Author

Listed:
  • Yang Li

    (China University of Mining and Technology-Beijing)

  • Xinghai Lei

    (China University of Mining and Technology-Beijing)

  • Nan Wang

    (China University of Mining and Technology-Beijing)

  • Yuqi Ren

    (China University of Mining and Technology-Beijing)

  • Xiangyang Jin

    (China University of Mining and Technology-Beijing)

  • Guoshuai Li

    (China University of Mining and Technology-Beijing)

  • Tiezheng Li

    (China University of Mining and Technology-Beijing)

  • Xiangji Ou

    (China University of Mining and Technology-Beijing)

Abstract

Water inrush at roof area seriously affects the safety of coal mines. The characteristics of aquifer and aquiclude at Wutongzhuang Mine are analyzed. Considering the effect of seepage field, a formula for calculating the height of water-conducting fractured zone (HWCFZ) in deep buried thick coal seam mining is derived. A damage-seepage coupling model with rock porosity and damage factor as independent variables is established. FLAC3D is re-developed by using FISH language, and the fluid–solid coupling calculation model of deep buried thick coal seam mining is established. The evolution law of the plastic zone, seepage field and water-conducting fractured zone (WCFZ)of the overburden in the gob with the advancement of the working face is analyzed, the main conclusions are as follows: With the continuous advancement of the working face, the distribution shape of the plastic zone and seepage field has changed from a trapezoidal to a saddle shape; when the working face reaches full mining, the maximum heights of the caving zone, fractured zone and HWCFZ are 24 m, 113 m, and 123 m, respectively; The 50 m-thick sandy shale aquifer is penetrated by the WCFZ, and the WCFZ on the side of the working face above the gob is the main water channel when the working face is advanced to 220 m. The on-site monitoring results showed that mine water inflow is not affected by surface rainfall and the 50 m-thick sandy shale is successively connected by the WCFZ. The results of comprehensive research showed that the HWCFZ cannot be calculated by traditional formulas when mining deep buried thick coal seams.

Suggested Citation

  • Yang Li & Xinghai Lei & Nan Wang & Yuqi Ren & Xiangyang Jin & Guoshuai Li & Tiezheng Li & Xiangji Ou, 2023. "Study on the failure characteristics of overburden and the evolution law of seepage field in deep buried thick coal seam under aquifers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1035-1064, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06036-4
    DOI: 10.1007/s11069-023-06036-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06036-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06036-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohong Niu & Guorui Feng & Qin Liu & Yanna Han & Ruipeng Qian, 2022. "Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: a case study of Dongyu coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1783-1802, September.
    2. Feng Du & Rui Gao, 2017. "Development Patterns of Fractured Water-Conducting Zones in Longwall Mining of Thick Coal Seams—A Case Study on Safe Mining Under the Zhuozhang River," Energies, MDPI, vol. 10(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou-You Zhou & Dian-Shu Liu & Zheng-Hua Gao & En-An Chi & Jun-Ying Rao & Tao Hu, 2024. "Dynamic Failure Characteristics of Sandstone Containing Different Angles of Pre-Existing Crack Defects," Mathematics, MDPI, vol. 12(11), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiyong Yin & Fangying Dong & Yiwen Zhang & Wenju Cheng & Peihe Zhai & Xuyan Ren & Ziang Liu & Yutao Zhai & Xin Li, 2022. "Height Prediction and 3D Visualization of Mining-Induced Water-Conducting Fracture Zone in Western Ordos Basin Based on a Multi-Factor Regression Analysis," Energies, MDPI, vol. 15(11), pages 1-16, May.
    2. Xiuchang Shi & Guangluo Lyu, 2023. "Mechanism of Bed Separation Water Inrush during the Mining of Extra-Thick Coal Seam under Super-Thick Sandstone Aquifer," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    3. Ziwei Ding & Shaoyi Wang & Jinglong Liao & Liang Li & Jindui Jia & Qingbao Tang & Xiaofei Li & Chengdeng Gao, 2023. "Reasonable Working-Face Size Based on Full Mining of Overburden Failure," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    4. Yun Zhang & Shenggen Cao & Rui Gao & Shuai Guo & Lixin Lan, 2018. "Prediction of the Heights of the Water-Conducting Fracture Zone in the Overlying Strata of Shortwall Block Mining Beneath Aquifers in Western China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06036-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.