IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06015-9.html
   My bibliography  Save this article

Transparent soil model test and numerical study on the effect of adjacent spring on the stability of tunnel face in composite strata

Author

Listed:
  • Shaokun Ma

    (GuangXi University)

  • Hongye Wei

    (GuangXi University)

  • Zhibo Duan

    (GuangXi University
    Tsinghua University)

  • Ying Liu

    (GuangXi University)

  • Zhen Huang

    (GuangXi University)

  • Benfu He

    (GuangXi University)

  • Zhang Zhou

    (GuangXi University)

Abstract

To study the instability and failure mechanism of tunnel face in composite stratum and the evolution law of supporting pressure in the areas with spring, this paper used two different types of transparent soil and a self-designed 3D model test system. Six large transparent soil model tests were carried out by considering different confined water heads of spring and tunnel burial depth. The optical laser and high-speed camera were controlled to move on a high-precision linear platform. CT scanning was performed to obtain the failure model under different conditions. The finite element method considering a two-way fluid–structure coupling was used to validate the model test. The research results indicate under spring, the support pressure curves can be divided into three stages: rapid decline, rebound-rise, and constant. There is no rebound-rise stage under the condition of no spring. With increased confined water heads or reduced tunnel burial depth, limit support pressure shows an increasing trend. 2D and 3D damage models for different working conditions were obtained by PIV technology and 3D reconstruction technology. If there is a spring, the maximum displacement moves to the top of the tunnel with the increase of water head and the failure mode is a combination of “silo shape” and “inverted prism”. When there is no spring, the maximum displacement appears at the interface of the soil layer, and the failure mode is a combination of “silo shape” and “wedge shape”. The presence or absence of springs and the change of the confined water head have no significant effect on the height of the loosening area. With the tunnel burial depth ratio of 0.5 to 2.0, the height of the loose area increases from 0.17 to 0.83 D, and the soil arch area develops outward.

Suggested Citation

  • Shaokun Ma & Hongye Wei & Zhibo Duan & Ying Liu & Zhen Huang & Benfu He & Zhang Zhou, 2023. "Transparent soil model test and numerical study on the effect of adjacent spring on the stability of tunnel face in composite strata," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 495-524, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06015-9
    DOI: 10.1007/s11069-023-06015-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06015-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06015-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongtao Sui & Chao Ma & Chunquan Dai & Tingzhi Yang, 2021. "Study on Stability of Shield Tunnel Excavation Face in Soil-Rock Composite Stratum," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-19, March.
    2. Shangqu Sun & Liping Li & Jing Wang & Shaoshuai Shi & Shuguang Song & Zhongdong Fang & Xingzhi Ba & Hao Jin, 2018. "Karst Development Mechanism and Characteristics Based on Comprehensive Exploration along Jinan Metro, China," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuling Wang & Jinxing Lai & Siyue He & Rodney Sheldon Garnes & Yuwei Zhang, 2020. "Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2905-2927, September.
    2. Sun, Shangqu & He, Peng & Wang, Gang & Li, Weiteng & Wang, Hongbo & Chen, Diyang & Xu, Fei, 2021. "Shape characterization methods of irregular cavity using Fourier analysis in tunnel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 191-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06015-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.