IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i3d10.1007_s11069-023-05991-2.html
   My bibliography  Save this article

Automatic post-tsunami loss modeling using deep learning CNN case study: Miyagi and Fukushima Japan tsunami

Author

Listed:
  • Shaheen Mohammed Saleh Ahmed

    (College of Science, Kirkuk University)

  • Hakan Güneyli

    (Cukurova University)

Abstract

Assessing the destruction caused by a tsunami is a challenging task that must be completed quickly with limited resources and information. To address this issue, we propose a method for accurate damage mapping using binary classification of high-resolution satellite imagery, where we enhance the performance of three pre-trained deep neural network models (Vgg19, Inception, and Xception). The pre-trained models are used, which have been previously trained on large datasets, and transferred to our tsunami problem. We also develop a custom network architecture specifically designed for tsunami damage detection using high-resolution remote sensing data, improving the accuracy of automated binary classification. We investigate the impact of various parameters and learning rates to detect small objects, demonstrating the suitability of our approach for tsunami damage assessment. Our network outperforms traditional and current deep learning-based approaches, as it shows low bias and high variance datasets that result in a skillful model. Specifically, we observe that Inception-v3 performs best on the dataset, exhibiting good behavior with low errors and achieving the best overall score with 24.11 min, while other models score between 30.50 min for Vgg19 and 45.33 min for Xception. Our study focuses on two important binary classification categories, tsunami-stricken and non-stricken areas, for which we train the proposed framework on a dataset comprising 30,000 small tiles of high-resolution satellite images obtained from Mexer satellite images. The model is validated on 8000 images using the Jupyter notebook of the Anaconda deep learning framework.

Suggested Citation

  • Shaheen Mohammed Saleh Ahmed & Hakan Güneyli, 2023. "Automatic post-tsunami loss modeling using deep learning CNN case study: Miyagi and Fukushima Japan tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3371-3397, July.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05991-2
    DOI: 10.1007/s11069-023-05991-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05991-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05991-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fumiyasu Makinoshima & Yusuke Oishi & Takashi Yamazaki & Takashi Furumura & Fumihiko Imamura, 2021. "Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marika Parcesepe & Francesca Forgione & Celeste Maria Ciampi & Gerardo Nisco Ciarcia & Valeria Guerriero & Mariaconsiglia Iannotti & Letizia Saviano & Maria Letizia Melisi & Salvatore Rampone, 2023. "Towards the automated evaluation of product packaging in the Food&Beverage sector through data science/machine learning methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2269-2280, June.
    2. Iyan E. Mulia & Naonori Ueda & Takemasa Miyoshi & Aditya Riadi Gusman & Kenji Satake, 2022. "Machine learning-based tsunami inundation prediction derived from offshore observations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:3:d:10.1007_s11069-023-05991-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.