IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i2d10.1007_s11069-023-05931-0.html
   My bibliography  Save this article

A new type of sliding zone soil and its severe effect on the formation of giant landslides in the Jinsha River tectonic suture zone, China

Author

Listed:
  • Sanshao Ren

    (China University of Geosciences
    Chinese Academy of Geological Sciences)

  • Yongshuang Zhang

    (China University of Geosciences
    Chinese Academy of Geological Sciences)

  • Jinqiu Li

    (China University of Geosciences
    Chinese Academy of Geological Sciences)

  • Xiaoyi Liu

    (China Aero Geophysical Survey and Remote Sensing Center for Natural Resources)

  • Ruian Wu

    (Chinese Academy of Geological Sciences)

Abstract

Most of the major rivers in the eastern margin of the Tibetan Plateau are distributed along the tectonic suture zone, where many giant landslides are present. The catastrophic Baige landslide that occurred in 2018 developed in the Jinsha River tectonic suture zone. What is the geo-structure prone to sliding in the Jinsha River tectonic suture zone? How does it control landslide evolution? A special soft rock/soil, altered clay, is found in the Jinsha River tectonic suture zone, and this altered clay may play an important role in giant landslide initiation. To understand the mechanism of the strength weakening of the altered clay and its effect on the formation of giant landslides, taking the Baige landslide as a typical case study, detailed field surveys and laboratory experiments were performed, and the process and mechanism of the transformation of altered clay into sliding zone soil were analyzed. The results indicate that (1) the altered clay is rich in platy layer clay minerals, so it has strong water sensitivity and expansibility. Furthermore, it has significant strain-softening behavior and extremely low residual strength due to the directional arrangement of clay minerals. (2) The evolution process of the Baige landslide was controlled by altered clay and rock mass discontinuities. Altered clay developed along ophiolite discontinuities and formed the weak interlayer of the slope. Due to long-term gravity creep, intermittent rainfall, and earthquakes, the strength of the altered clay was continuously weakened, and the sliding zone gradually penetrated, which finally led to the failure of the Baige landslide. The results of this manuscript are helpful for understanding the evolution mechanism of giant landslides in tectonic suture zones around the world.

Suggested Citation

  • Sanshao Ren & Yongshuang Zhang & Jinqiu Li & Xiaoyi Liu & Ruian Wu, 2023. "A new type of sliding zone soil and its severe effect on the formation of giant landslides in the Jinsha River tectonic suture zone, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1847-1868, June.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05931-0
    DOI: 10.1007/s11069-023-05931-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05931-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05931-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangjun Pei & Shenghua Cui & Ling Zhu & Hui Wang & Luguang Luo & Xiaochao Zhang, 2022. "Sanxicun landslide: an investigation of progressive failure of a gentle bedding slope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 51-78, March.
    2. Cristiano Collettini & André Niemeijer & Cecilia Viti & Chris Marone, 2009. "Fault zone fabric and fault weakness," Nature, Nature, vol. 462(7275), pages 907-910, December.
    3. Huie Chen & Wenliang Ma & Xiaoqing Yuan & Cencen Niu & Bin Shi & Guili Tian, 2022. "Influence of stress conditions on shear behavior of slip zone soil in ring shear test: an experimental study and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1179-1197, March.
    4. Antoine Lucas & Anne Mangeney & Jean Paul Ampuero, 2014. "Frictional velocity-weakening in landslides on Earth and on other planetary bodies," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Yu & Xinghui Huang & Zhengyuan Li, 2020. "Variation patterns of landslide basal friction revealed from long-period seismic waveform inversion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 313-327, January.
    2. Torben Treffeisen & Andreas Henk, 2020. "Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models—A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip," Energies, MDPI, vol. 13(10), pages 1-27, May.
    3. Zongxing Zou & Tao Luo & Qinwen Tan & Junbiao Yan & Yinfeng Luo & Xinli Hu, 2023. "Dynamic determination of landslide stability and thrust force considering slip zone evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 31-53, August.
    4. Morgane Brunet & Laurent Moretti & Anne Friant & Anne Mangeney & Enrique Domingo Fernández Nieto & Francois Bouchut, 2017. "Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1189-1222, June.
    5. Torben Treffeisen & Andreas Henk, 2020. "Elastic and Frictional Properties of Fault Zones in Reservoir-Scale Hydro-Mechanical Models—A Sensitivity Study," Energies, MDPI, vol. 13(18), pages 1-28, September.
    6. Matthias Rauter & Sylvain Viroulet & Sigríður Sif Gylfadóttir & Wolfgang Fellin & Finn Løvholt, 2022. "Granular porous landslide tsunami modelling – the 2014 Lake Askja flank collapse," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. John D. Bedford & Daniel R. Faulkner & Nadia Lapusta, 2022. "Fault rock heterogeneity can produce fault weakness and reduce fault stability," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Jianqi Zhuang & Kecheng Jia & Jiewei Zhan & Yi Zhu & Chenglong Zhang & Jiaxu Kong & Chenhui Du & Shibao Wang & Yanbo Cao & Jianbing Peng, 2022. "Scenario simulation of the geohazard dynamic process of large-scale landslides: a case study of the Xiaomojiu landslide along the Jinsha River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1337-1357, June.
    9. Wei Feng & Lu Yao & Chiara Cornelio & Rodrigo Gomila & Shengli Ma & Chaoqun Yang & Luigi Germinario & Claudio Mazzoli & Giulio Di Toro, 2023. "Physical state of water controls friction of gabbro-built faults," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05931-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.