IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i2d10.1007_s11069-022-05767-0.html
   My bibliography  Save this article

An urban drought categorization framework and the vulnerability of a lowland city to groundwater urban droughts

Author

Listed:
  • Ilias Machairas

    (Delft University of Technology)

  • Frans H. M. Ven

    (Delft University of Technology
    Deltares)

Abstract

Due to climate change, droughts will intensify in large parts of the world. Drought and its impacts on nature and agriculture have been studied thoroughly, but its effects on the urban environment is rather unexplored. But also the built environment is susceptible to droughts and estimation of its vulnerability is the first step to its protection. This article is focusing on assessing the vulnerability of a city to groundwater drought, using parts of the lowland city of Leiden, the Netherlands, as a case study. Using a new urban drought categorization framework, groundwater drought is separated from soil moisture drought, open water drought and water supply drought, as each has its own impacts. Vulnerability was estimated as the aggregation of drought exposure and damage sensitivity. Drought deficit and duration were used as exposure indicators. Both a Fixed and Variable threshold method was used to quantify these indicators. To quantify drought vulnerability weights were assessed for selected exposure and damage sensitivity indicators using an Analytical Hierarchy Process (AHP) with a small number of experts. Based on these weights the spatial variation in vulnerability for groundwater drought follows damage sensitivity patterns—rather than exposure ones. And, out of all damage sensitivity indicators used, ‘land use', ‘low income' and ‘monuments’ contributed the most to the spatial variation in vulnerability. Due to the fact that the number of drought experts’ opinions in the AHP was limited these vulnerability results however remain uncertain. The proposed methodology however allows water managers to determine vulnerability of urbanized areas to groundwater drought, identify highly vulnerable areas and focus their mitigating actions.

Suggested Citation

  • Ilias Machairas & Frans H. M. Ven, 2023. "An urban drought categorization framework and the vulnerability of a lowland city to groundwater urban droughts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1403-1431, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05767-0
    DOI: 10.1007/s11069-022-05767-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05767-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05767-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Thomas & R. K. Jaiswal & Ravi Galkate & P. C. Nayak & N. C. Ghosh, 2016. "Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1627-1652, April.
    2. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    3. Desbureaux, Sébastien & Rodella, Aude-Sophie, 2019. "Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas," World Development, Elsevier, vol. 114(C), pages 13-27.
    4. Kavina S. Dayal & Ravinesh C. Deo & Armando A. Apan, 2018. "Spatio-temporal drought risk mapping approach and its application in the drought-prone region of south-east Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 823-847, September.
    5. Israel R. Orimoloye & Johanes A. Belle & Adeyemi O. Olusola & Emmanuel T. Busayo & Olusola O. Ololade, 2021. "Spatial assessment of drought disasters, vulnerability, severity and water shortages: a potential drought disaster mitigation strategy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2735-2754, February.
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    7. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    8. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    2. Roquia Salam & Abu Reza Md. Towfiqul Islam & Badhon Kumar Shill & G. M. Monirul Alam & Md. Hasanuzzaman & Md. Morshadul Hasan & Sobhy M. Ibrahim & Roger C. Shouse, 2021. "Nexus between vulnerability and adaptive capacity of drought-prone rural households in northern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 509-527, March.
    3. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.
    4. Arnold R. Salvacion, 2023. "Delineating village-level drought risk in Marinduque Island, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2993-3014, April.
    5. Bradley Greaver & Leo Raabe & William P Fox & Robert E Burks, 2018. "CARVER 2.0: integrating the Analytical Hierarchy Process’s multi-attribute decision-making weighting scheme for a center of gravity vulnerability analysis for US Special Operations Forces," The Journal of Defense Modeling and Simulation, , vol. 15(1), pages 111-120, January.
    6. Esponda-Bernal, Maria del Mar & Echeverri-Sanchez, Andrés Fernando & Aguirre-Gonzalez, Eduar Fernando & Andrade, Robert Santiago, 2024. "A biophysical suitability model to identify best areas for the cultivation of potential cash crops: The case of basil in Valle del Cauca," Agricultural Systems, Elsevier, vol. 216(C).
    7. Babel, Mukand S. & Chawrua, Lapanploy & Khadka, Dibesh & Tingsanchali, Tawatchai & Shanmungam, Mohana Sundaram, 2024. "Agricultural drought risk and local adaptation measures in the Upper Mun River Basin, Thailand," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Nayan D. Zagade & Bhavana N. Umrikar, 2021. "Drought severity modeling of upper Bhima river basin, western India, using GIS–AHP tools for effective mitigation and resource management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1165-1188, January.
    9. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    10. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    11. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    12. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    13. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    14. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    15. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    16. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    17. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    18. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    19. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    20. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05767-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.