IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05677-1.html
   My bibliography  Save this article

Assessment of flood vulnerability in Jamuna floodplain: a case study in Jamalpur district, Bangladesh

Author

Listed:
  • Md. Munjurul Haque

    (Shahjalal University of Science and Technology)

  • Sabina Islam

    (Shahjalal University of Science and Technology)

  • Md. Bahuddin Sikder

    (Shahjalal University of Science and Technology)

  • Md. Saiful Islam

    (EQMS Consulting Limited)

  • Annyca Tabassum

    (Shahjalal University of Science and Technology)

Abstract

Floods are a frequent natural calamity in Bangladesh, where many areas get affected almost every year. An indicator-based vulnerability assessment can help efficiently manage the disaster. Therefore, this study intends to assess the community vulnerability in the Jamuna floodplain, one of the most flood-affected areas, using an indexing method. The index involves many indicators of flood exposure, sensitivity, and adaptive capacity along with their weights, determined based on an extensive literature review. A pretested questionnaire was employed to collect primary data from the study area through 400 household-level interviews. Using multistage sampling techniques, five upazilas from Jamalpur district, i.e., Dewanganj, Islampur, Madarganj, Melandaha, and Sharishabari, were purposefully chosen based on past flood damage reports. The percentage values were derived using SPSS for every variable from the field-level data. The variable vulnerability index (VVI) was computed by dividing the indicator’s weight by its percentage value. Then, exposure, sensitivity, and adaptive capacity indices were calculated using the VVI values. Finally, the composite vulnerability index (CVI) of the five Upazilas has been computed using an established and recognized index formula. The CVI scores for Dewanganj, Islampur, Madarganj, Melandaha, and Sharishabari are 0.86, 0.84, 0.71, 0.70, and 0.65, respectively, which suggest a high overall vulnerability. The scores of the exposure and adaptive capacity indices reveal that Dewanganj and Islampur Upazilas have higher vulnerability than the other three upazilas, especially due to poor socioeconomic conditions, low adaptive capacity, and high exposure. This study recommends some infrastructural development, such as sustainable flood-resistant dams, as the study sites are in a flood-prone zone. Houses should be built using flood-resistant materials like bricks and concrete, which are more resilient than mud. Improvements in education and multiple income sources will help the affected people increase their coping capacity.

Suggested Citation

  • Md. Munjurul Haque & Sabina Islam & Md. Bahuddin Sikder & Md. Saiful Islam & Annyca Tabassum, 2023. "Assessment of flood vulnerability in Jamuna floodplain: a case study in Jamalpur district, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 341-363, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05677-1
    DOI: 10.1007/s11069-022-05677-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05677-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05677-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy Brouwer & Sonia Akter & Luke Brander & Enamul Haque, 2007. "Socioeconomic Vulnerability and Adaptation to Environmental Risk: A Case Study of Climate Change and Flooding in Bangladesh," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 313-326, April.
    2. Boris Braun & Tibor Aßheuer, 2011. "Floods in megacity environments: vulnerability and coping strategies of slum dwellers in Dhaka/Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 771-787, August.
    3. Ashfaq Ahmad Shah & Jingzhong Ye & Muhammad Abid & Jahangir Khan & Syed Muhammad Amir, 2018. "Flood hazards: household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 147-165, August.
    4. Paul, Bimal Kanti, 1995. "Farmers' Responses to the Flood Action Plan (FAP) of Bangladesh: An empirical study," World Development, Elsevier, vol. 23(2), pages 299-309, February.
    5. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    6. Piya, Luni & Maharjan, Keshav Lall & Joshi, Niraj Prakash, 2012. "Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126191, International Association of Agricultural Economists.
    7. M. Papathoma-Köhle & M. Kappes & M. Keiler & T. Glade, 2011. "Physical vulnerability assessment for alpine hazards: state of the art and future needs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 645-680, August.
    8. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    2. Dilshad Ahmad & Muhammad Afzal, 2019. "Household vulnerability and resilience in flood hazards from disaster-prone areas of Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 337-354, October.
    3. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    4. Rex Aurelius C. Robielos & Chiuhsiang Joe Lin & Delia B. Senoro & Froilan P. Ney, 2020. "Development of Vulnerability Assessment Framework for Disaster Risk Reduction at Three Levels of Geopolitical Units in the Philippines," Sustainability, MDPI, vol. 12(21), pages 1-27, October.
    5. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    6. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    7. Daystar Babanawo & Precious Agbeko D. Mattah & Samuel K. M. Agblorti & Emmanuel K. Brempong & Memuna Mawusi Mattah & Denis Worlanyo Aheto, 2022. "Local Indicator-Based Flood Vulnerability Indices and Predictors of Relocation in the Ketu South Municipal Area of Ghana," Sustainability, MDPI, vol. 14(9), pages 1-26, May.
    8. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    9. Md. Islam & Md. Malak & M. Islam, 2013. "Community-based disaster risk and vulnerability models of a coastal municipality in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2083-2103, December.
    10. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
    11. Gabrielle Linscott & Andrea Rishworth & Brian King & Mikael P. Hiestand, 2022. "Uneven experiences of urban flooding: examining the 2010 Nashville flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 629-653, January.
    12. Ali Jamshed & Joern Birkmann & Daniel Feldmeyer & Irfan Ahmad Rana, 2020. "A Conceptual Framework to Understand the Dynamics of Rural–Urban Linkages for Rural Flood Vulnerability," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    13. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    14. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    15. De Silva, M.M.G.T. & Kawasaki, Akiyuki, 2018. "Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community," Ecological Economics, Elsevier, vol. 152(C), pages 131-140.
    16. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    17. S. Nazrul Islam & John Winkel, 2017. "Climate Change and Social Inequality," Working Papers 152, United Nations, Department of Economics and Social Affairs.
    18. Muhammad Nazeer & Hans-Rudolf Bork, 2021. "A local scale flood vulnerability assessment in the flood-prone area of Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 755-781, January.
    19. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    20. Jiayu Ding & Yuewei Wang & Chaoyue Li, 2024. "A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems," Land, MDPI, vol. 13(6), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05677-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.