IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i3d10.1007_s11069-022-05646-8.html
   My bibliography  Save this article

Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat

Author

Listed:
  • Kai Cui

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology)
    Southwest Jiaotong University)

  • Xiaotong Qin

    (Southwest Jiaotong University)

Abstract

In recent years, with the global warming, the unfrozen water content of permafrost slope increases year by year. The decrease of slope stability is a great threat to the engineering construction in permafrost area. In this study, the south piedmont slope of Bayan Kara Mountain is taken as the research object. Through the field water and temperature monitoring of different positions and depths of the slope, the seasonal and interannual water change characteristics of the slope were analyzed. Combined with indoor shear strength test, numerical simulation and monitoring data, the moisture, temperature and stability of frozen soil slope in spring thawing period were analyzed. The analysis results show that: Water content and freeze–thaw cycles have great influence on the shear strength parameters at the interface. The slope moisture change in the region is divided into four stages, the water decline stage, the low water content stage, the water rise stage and the high water content stage. The freeze–thaw cycle and precipitation are the main reasons for the water change in each stage. From the middle of May to the middle of June is the high risk period of slope instability. The spring thaw landslide is dominated by shallow surface landslide, and the sliding surface is shallow.

Suggested Citation

  • Kai Cui & Xiaotong Qin, 2023. "Landslide risk assessment of frozen soil slope in Qinghai Tibet Plateau during spring thawing period under the coupling effect of moisture and heat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2399-2416, February.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05646-8
    DOI: 10.1007/s11069-022-05646-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05646-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05646-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fujun Niu & Jing Luo & Zhanju Lin & Minhao Liu & Guoan Yin, 2014. "Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai–Tibet Engineering Corridor, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1667-1682, December.
    2. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Xu & Zhongwen Wang & Meilu Yu & Haotian Xie & Yanghaonan Jiao & Qi An & Chengjie Li, 2024. "Simulation study of the rupture mechanism of through-cracking under freeze–thaw load coupling effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9809-9831, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    3. Hengshuai Gao & Wenbao Li & Sheng Zhang & Yulong Tao & Xin Guo, 2024. "Hydraulic Relationship between Hulun Lake and Cretaceous Confined Aquifer Using Hydrochemistry and Isotopic Data," Sustainability, MDPI, vol. 16(5), pages 1-14, March.
    4. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Da Mata, Daniel & Resende, Guilherme, 2020. "Changing the climate for banking: The economic effects of credit in a climate-vulnerable area," Journal of Development Economics, Elsevier, vol. 146(C).
    11. Behnam Khorrami & Shoaib Ali & Orhan Gündüz, 2023. "Investigating the Local-scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3439-3456, July.
    12. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Yu Zhou & Xinmin Wang & Weiying Li & Shuyun Zhou & Laizhu Jiang, 2023. "Water Quality Evaluation and Pollution Source Apportionment of Surface Water in a Major City in Southeast China Using Multi-Statistical Analyses and Machine Learning Models," IJERPH, MDPI, vol. 20(1), pages 1-16, January.
    14. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    15. Fengyun Liu & Zhushan Shao & Rujia Qiao & Shuocheng Zhang & Wen-Chieh Cheng, 2020. "The influence of compaction energy on frost-heave characteristics of coarse-grained soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 897-908, January.
    16. Ben Stewart-Koster & Stuart E. Bunn & Pamela Green & Christopher Ndehedehe & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Fabrice DeClerck & Kristie L. Ebi & Christopher Gordon & Joyee, 2024. "Living within the safe and just Earth system boundaries for blue water," Nature Sustainability, Nature, vol. 7(1), pages 53-63, January.
    17. Nadeem, Adeel Ahmad & Zha, Yuanyuan & Shi, Liangsheng & Zafar, Zeeshan & Ali, Shoaib & Zhang, Yufan & Altaf, Adnan Raza & Afzal, Muhammad & Zubair, Muhammad, 2023. "SAFER-ET based assessment of irrigation patterns and impacts on groundwater use in the central Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 289(C).
    18. Han-Jen Niu & Kuei-Shu Huang & Pao-Yuan Huang & Huey-Fang Ju, 2024. "Leisure-Time Physical Activity as a Pathway to Sustainable Living: Insights on Health, Environment, and Green Consumerism," IJERPH, MDPI, vol. 21(5), pages 1-17, May.
    19. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    20. Ahmad Zeeshan Bhatti & Aitazaz Ahsan Farooque & Qing Li & Farhat Abbas & Bishnu Acharya, 2021. "Spatial Distribution and Sustainability Implications of the Canadian Groundwater Resources under Changing Climate," Sustainability, MDPI, vol. 13(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05646-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.