IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i3d10.1007_s11069-022-05373-0.html
   My bibliography  Save this article

A place-based analysis of tornado activity and casualties in Shreveport, Louisiana

Author

Listed:
  • Tyler Fricker

    (University of Louisiana Monroe)

  • Douglas L. Allen

    (Emporia State University)

Abstract

Tornadoes are among the most violent hazards in the world capable of producing mass casualties. Much of what is known about the relationship between tornadoes and casualties—injuries and fatalities—is driven by quantitative methods that often omit individual community factors. In response, here we present a place-based analysis of tornado activity and casualties in Shreveport, Louisiana. Results show that tornado casualties are more likely in smooth and lower topography and in formally redlined neighborhoods. Results also indicate that areas around the local Barksdale Air Force Base have experienced fewer casualties than other parts of the city since the installation of a Doppler Radar in 1995 and that Shreveport has a greatly reduced casualty rate since the Super Outbreak of 2011. We argue that continued place-based approaches are necessary for an understanding of the multi-dimensional, structural, and historical legacies that produce disproportionate impacts to environmental hazards and that when combined with quantitative methods, place-based approaches have the potential to create regional-or-local intervention strategies that can reduce the loss of life.

Suggested Citation

  • Tyler Fricker & Douglas L. Allen, 2022. "A place-based analysis of tornado activity and casualties in Shreveport, Louisiana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1853-1874, September.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05373-0
    DOI: 10.1007/s11069-022-05373-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05373-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05373-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Jungmin & Loveridge, Scott & Shupp, Robert & Skidmore, Mark, 2017. "Double danger in the double wide: Dimensions of poverty, housing quality and tornado impacts," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 1-15.
    2. Simmons, Kevin M., 2011. "Economic and Societal Impacts of Tornadoes," University of Chicago Press Economics Books, University of Chicago Press, number 9781878220998, January.
    3. Namin, S. & Xu, W. & Zhou, Y. & Beyer, K., 2020. "The legacy of the Home Owners’ Loan Corporation and the political ecology of urban trees and air pollution in the United States," Social Science & Medicine, Elsevier, vol. 246(C).
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    5. William Donner, 2007. "The political ecology of disaster: An analysis of factors influencing U.S. tornado fatalities and injuries, 1998–2000," Demography, Springer;Population Association of America (PAA), vol. 44(3), pages 669-685, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Shen & Seong Hwang, 2015. "A spatial risk analysis of tornado-induced human injuries and fatalities in the USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1223-1242, June.
    2. Ethan J. Raker, 2020. "Natural Hazards, Disasters, and Demographic Change: The Case of Severe Tornadoes in the United States, 1980–2010," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 653-674, April.
    3. Jungmin Lim & Mark Skidmore, 2019. "Flood Fatalities in the United States: The Roles of Socioeconomic Factors and the National Flood Insurance Program," Southern Economic Journal, John Wiley & Sons, vol. 85(4), pages 1032-1057, April.
    4. Dongying Li & Galen D Newman & Bev Wilson & Yue Zhang & Robert D Brown, 2022. "Modeling the relationships between historical redlining, urban heat, and heat-related emergency department visits: An examination of 11 Texas cities," Environment and Planning B, , vol. 49(3), pages 933-952, March.
    5. Bimal Paul & Mitchel Stimers, 2012. "Exploring probable reasons for record fatalities: the case of 2011 Joplin, Missouri, Tornado," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1511-1526, November.
    6. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    7. Leah Platt Boustan & Matthew E. Kahn & Paul W. Rhode, 2012. "Moving to Higher Ground: Migration Response to Natural Disasters in the Early Twentieth Century," American Economic Review, American Economic Association, vol. 102(3), pages 238-244, May.
    8. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    9. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    10. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    11. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    12. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    13. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    14. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    15. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    16. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    17. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    18. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    19. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    20. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05373-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.