IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i3d10.1007_s11069-022-05268-0.html
   My bibliography  Save this article

Effect of herbaceous plant root density on slope stability in a shallow landslide-prone area

Author

Listed:
  • Jia Li

    (Lanzhou University
    Gansu Academy of Sciences)

  • Xia Wang

    (Lanzhou University
    Key Laboratory for Environmental Pollution Prediction and Control)

  • Haixia Jia

    (Lanzhou University
    Key Laboratory for Environmental Pollution Prediction and Control)

  • Yang Liu

    (Lanzhou University
    Gansu Academy of Sciences)

  • Yunfei Zhao

    (Lanzhou University
    Key Laboratory for Environmental Pollution Prediction and Control)

  • Changming Shi

    (Lanzhou University
    Gansu Academy of Sciences)

  • Furong Zhang

    (Lanzhou University
    Gansu Academy of Sciences)

Abstract

To evaluate the effects of herbaceous plants’ roots density on soil structure and slope stability in a shallow landslide-affected area, we determined the mechanical characteristics of roots of four herbs (Cynodon dactylon, Artemisia sacrorum, Digitaria sanguinalis, and Clematis florida) growing on slopes prone to landslides and analyzed their effects on soil physicochemical properties. Root tensile strength and shear strength of root–soil composites were determined at different root densities. The slope safety factor was simulated using the strength reduction method. Compared with bare land soil, rhizosphere soils were characterized by higher bulk density, porosity, nutrient content, aggregate content, and greater stability (p

Suggested Citation

  • Jia Li & Xia Wang & Haixia Jia & Yang Liu & Yunfei Zhao & Changming Shi & Furong Zhang, 2022. "Effect of herbaceous plant root density on slope stability in a shallow landslide-prone area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2337-2360, July.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05268-0
    DOI: 10.1007/s11069-022-05268-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05268-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05268-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Wang, 2013. "Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1835-1847, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuangang Gong & Dazhi Ni & Yuna Liu & Yalei Li & Qingmei Huang & Yu Tian & Hao Zhang, 2024. "Herbaceous Vegetation in Slope Stabilization: A Comparative Review of Mechanisms, Advantages, and Practical Applications," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    2. Jinguo Lv & Wenqi Wang & Te Dai & Baoyong Liu & Guangwei Liu, 2024. "Experimental Study on the Effect of Soil Reinforcement and Slip Resistance on Shallow Slopes by Herbaceous Plant Root System," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    3. Yongsheng Yao & Peiyi Xu & Jue Li & Hengwu Hu & Qun Qi, 2024. "Advancements and Applications of Life Cycle Assessment in Slope Treatment: A Comprehensive Review," Sustainability, MDPI, vol. 16(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    2. Zheng Zhong & Ningsheng Chen & Guisheng Hu & Zheng Han & Huayong Ni, 2021. "Aggravation of debris flow disaster by extreme climate and engineering: a case study of the Tongzilin Gully, Southwestern Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 237-253, October.
    3. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    4. Ning Bao & Jian-feng Chen & Rui Sun, 2023. "A simplified method to estimate the distribution of lateral forces acting on stabilizing piles in c–φ soil slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1321-1347, June.
    5. Yao Shunyu & Nazir Ahmed Bazai & Tang Jinbo & Jiang Hu & Yi Shujian & Zou Qiang & Tashfain Ahmed & Guo Jian, 2022. "Dynamic process of a typical slope debris flow: a case study of the wujia gully, Zengda, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 565-586, May.
    6. He, Songtang & Wang, Daojie & Zhao, Peng & Li, Yong & Lan, Huijuan & Chen, Wenle & Jamali, Ali Akbar, 2020. "A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China," Land Use Policy, Elsevier, vol. 99(C).
    7. Mahdi Motagh & Hossein Akhani, 2023. "The cascading failure of check dam systems during the 28 July 2022 Emamzadeh Davood flood in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 4051-4057, April.
    8. Liuqun Dong, 2023. "Energy consumption analysis of the granular run-out process: effect of particle shape and slope angle," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1673-1687, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05268-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.