IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i3d10.1007_s11069-021-05169-8.html
   My bibliography  Save this article

What do biphasic flow experiments reveal on the variability of exposure on alluvial fans and which implications for risk assessment result from this?

Author

Listed:
  • Hector Diaz

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra)

  • Bruno Mazzorana

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra
    Universidad Austral de Chile)

  • Bernhard Gems

    (University of Innsbruck, Unit of Hydraulic Engineering)

  • Ivan Rojas

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra)

  • Nicole Santibañez

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra)

  • Pablo Iribarren

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra)

  • Mario Pino

    (Universidad Austral de Chile, Instituto de Ciencias de la Tierra)

  • Andrés Iroumé

    (Universidad Austral de Chile, Instituto de Conservación, Biodiversidad y Territorio)

Abstract

Sudden avulsions, unexpected channel migrations and backfilling phenomena are autogenic phenomena that can considerably change the propagation patterns of sediment-laden flows on alluvial fans. Once the initial and boundary conditions of the hazard scenario with a given return period are determined, the assessment of the associated exposed areas is based on one numerical, essentially deterministic, process simulation which may not adequately capture the underlying process variability. We generated sediment-laden flows on an experimental alluvial fan by following a “similarity-of-process concept”. Specifically, we considered a convexly shaped alluvial fan model layout featuring a curved guiding channel. As loading conditions, we defined a reference, an increased and a reduced level for the released water volume and the predisposed solid fraction, respectively. Further, we imposed two different stream power regimes and accomplished, for each factor combination, eight experimental runs. The associated exposure areas were recorded by video and mapped in a GIS. We then analysed exposure data and determined exposure probability maps superposing the footprints of the eight repetitions associated with each experimental loading condition. The patterns of exposure referred to the specific loading conditions showed a noticeable variability related to the main effects of the total event volume, the solid fraction, the interactions between them, and the imposed stream power in the feeding channel. Our research suggests that adopting a probabilistic notion of exposure in risk assessment and mitigation is advisable. Further, a major challenge consists in adapting numerical codes to better reflect the stochastics of process propagation for more reliable flood hazard assessments.

Suggested Citation

  • Hector Diaz & Bruno Mazzorana & Bernhard Gems & Ivan Rojas & Nicole Santibañez & Pablo Iribarren & Mario Pino & Andrés Iroumé, 2022. "What do biphasic flow experiments reveal on the variability of exposure on alluvial fans and which implications for risk assessment result from this?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 3099-3120, April.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05169-8
    DOI: 10.1007/s11069-021-05169-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05169-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05169-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    2. Marzieh Mokarram & Hamid Reza Pourghasemi & John P. Tiefenbacher, 2021. "Morphometry of AFs in upstream and downstream of floods in Gribayegan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 425-450, August.
    3. Mojtaba Pirnazar & Hafez Hasheminasab & Arash Zand Karimi & Kaveh Ostad-Ali-Askari & Zahra Ghasemi & Majedeh Haeri-Hamedani & Elham Mohri-Esfahani & Saeid Eslamian, 2018. "The evaluation of the usage of the fuzzy algorithms in increasing the accuracy of the extracted land use maps," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 17(4), pages 307-321.
    4. B. Mazzorana & F. Comiti & S. Fuchs, 2013. "A structured approach to enhance flood hazard assessment in mountain streams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(3), pages 991-1009, July.
    5. Kazuo Okunishi & Hiroshi Suwa, 2001. "Assessment of Debris-Flow Hazards of Alluvial Fans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 259-269, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    2. Sven Fuchs & Alexandr Shnyparkov & Vincent Jomelli & Nikolay Kazakov & Sergey Sokratov, 2017. "Editorial to the special issue on natural hazards and risk research in Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 1-16, August.
    3. Yang Zhou & Yansui Liu & Wenxiang Wu & Ning Li, 2015. "Integrated risk assessment of multi-hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 257-280, August.
    4. Marwa M. Aly & Neveen H. Refay & Hoda Elattar & Karim M. Morsy & Erick R. Bandala & Samir A. Zein & Mohamed K. Mostafa, 2022. "Ecohydrology and flood risk management under climate vulnerability in relation to the sustainable development goals (SDGs): a case study in Nagaa Mobarak Village, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1107-1135, June.
    5. Harsh Wardhan Pandey & Ramesh Kumar & Rajib Kumar Mandal, 2023. "Ranking of mitigation strategies for duck curve in Indian active distribution network using MCDM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1255-1275, August.
    6. Liesbet Jacobs & Jan Maes & Kewan Mertens & John Sekajugo & Wim Thiery & Nicole van Lipzig & Jean Poesen & Matthieu Kervyn & Olivier Dewitte, 2016. "Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 851-876, November.
    7. Ekaterina Kazakova & V. Lobkina & Yu. Gensiorovskiy & S. Zhiruev, 2017. "Large-scale assessment of avalanche and debris flow hazards in the Sakhalin region, Russian Federation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 237-251, August.
    8. Powell, J.H. & Mustafee, N. & Chen, A.S. & Hammond, M., 2016. "System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis," European Journal of Operational Research, Elsevier, vol. 254(2), pages 550-564.
    9. Posadas, A. & Morales, J. & Ibañez, J.M. & Posadas-Garzon, A., 2021. "Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. He, Songtang & Wang, Daojie & Zhao, Peng & Li, Yong & Lan, Huijuan & Chen, Wenle & Jamali, Ali Akbar, 2020. "A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China," Land Use Policy, Elsevier, vol. 99(C).
    11. G. Chevalier & V. Medina & M. Hürlimann & A. Bateman, 2013. "Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 213-238, June.
    12. He, Songtang & Wang, Daojie & Li, Yong & Fang, Yingchao & Lan, Huijuan & Chen, Wenle, 2019. "Implementation of a landscape ecological use pattern model: Debris flow waste-shoal land use in the Yeyatang Basin, Yunnan Province, China," Land Use Policy, Elsevier, vol. 81(C), pages 483-492.
    13. V. I. Osipov & V. I. Larionov & V. N. Burova & N. I. Frolova & S. P. Sushchev, 2017. "Methodology of natural risk assessment in Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 17-41, August.
    14. Songtang He & Daojie Wang & Yong Li & Peng Zhao, 2018. "Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    15. Rohallah Fattahi Nafchi & Hamid Raeisi Vanani & Kobra Noori Pashaee & Hosein Samadi Brojeni & Kaveh Ostad-Ali-Askari, 2022. "Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1495-1505, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:3:d:10.1007_s11069-021-05169-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.