IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i1d10.1007_s11069-021-05088-8.html
   My bibliography  Save this article

Coastal morphodynamic analysis in Buleleng Regency, Bali—Indonesia

Author

Listed:
  • Muh Aris Marfai

    (Universitas Gadjah Mada
    Geospatial Information Agency)

  • Ratih Winastuti

    (Universitas Gadjah Mada)

  • Arief Wicaksono

    (Universitas Gadjah Mada)

  • Bachtiar W. Mutaqin

    (Universitas Gadjah Mada)

Abstract

Sediment as erosion product can affect shorelines, making sediment transport a key process to consider in coastal and shoreline management. Field surveys and secondary data can identify where suspended matters are distributed and deposited to analyze sediment uniformity factors: beach morphology and materials. This research set out to determine the Buleleng Regency's morphodynamic aspects based on the coastal landscape's physical characteristics and the processes acting upon each sediment cell. Field observations were conducted at five stations, from Tukad Gerokgak to Tukad Saba estuary. Jaelani's spectral transformation has been applied to analyze Total Suspended Solids using Sentinel 2A imagery. The laboratory test results of grain-size samples were processed on GRADISTAT, then the depositional environment and sediment transport direction were determined from average grain size, standard deviation, skewness, and kurtosis. Shoreline change, an indicator of coastal morphodynamics, was mapped from Landsat images in 2000, 2008, and 2019 using the Digital Shoreline Analysis System. Statistical analysis on GRADISTAT provided details on depositional environment and sediment transport and deposition based on grain-size distribution. Results indicate poorly sorted medium grain size: gravel (stone) to coarse sand, making up the sediment population from Tukad Gerokgak to Tukad Saba. Generally, sediment is deposited toward coarse, even very coarse, grain on a strongly sloping beach, and there is a high likeliness of sediment accretion. Identified morphodynamic characteristics suggest that the coastal landscape needs structural mitigation to overcome the accelerating impact of human activities and physical processes.

Suggested Citation

  • Muh Aris Marfai & Ratih Winastuti & Arief Wicaksono & Bachtiar W. Mutaqin, 2022. "Coastal morphodynamic analysis in Buleleng Regency, Bali—Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 995-1017, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05088-8
    DOI: 10.1007/s11069-021-05088-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05088-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05088-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjiwana Arjasakusuma & Sandiaga Swahyu Kusuma & Siti Saringatin & Pramaditya Wicaksono & Bachtiar Wahyu Mutaqin & Raihan Rafif, 2021. "Shoreline Dynamics in East Java Province, Indonesia, from 2000 to 2019 Using Multi-Sensor Remote Sensing Data," Land, MDPI, vol. 10(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05088-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.