IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i1d10.1007_s11069-021-04963-8.html
   My bibliography  Save this article

Earthquake-induced landslide prediction using back-propagation type artificial neural network: case study in northern Iran

Author

Listed:
  • Ali M. Rajabi

    (University of Tehran)

  • Mahdi Khodaparast

    (University of Qom)

  • Mostafa Mohammadi

    (University of Qom)

Abstract

Landslides can cause extensive damage, particularly those triggered by earthquakes. The current study used back propagation of an artificial neural network (ANN) to conduct risk studies on landslides in the area affected by the Manjil-Rudbar earthquake in Iran in 1990 (M = 7.7). Newmark displacement analysis was used to develop an earthquake-induced landslide hazard map for the blocks representing Chahar-Mahal and Chalkasar near the earthquake epicenter, an area of 309 km2. The input data included soil cohesion, soil friction angle, unit weight of soil, unit weight of water, distance from hypocenter, slope, and earthquake magnitude as effective parameters for landslide occurrence. The hazard map was compared with an inventory map and other research findings. The results indicated that the landslides predicted by ANN covered 50% of the inventory map of the study area (2088 of 4097 slide cells). The results of the current study suggest that the ANN method is relatively efficient for accurate prediction of landslides.

Suggested Citation

  • Ali M. Rajabi & Mahdi Khodaparast & Mostafa Mohammadi, 2022. "Earthquake-induced landslide prediction using back-propagation type artificial neural network: case study in northern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 679-694, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04963-8
    DOI: 10.1007/s11069-021-04963-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04963-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04963-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donatella Caniani & Stefania Pascale & Francesco Sdao & Aurelia Sole, 2008. "Neural networks and landslide susceptibility: a case study of the urban area of Potenza," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 55-72, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunal Gupta & Neelima Satyam, 2024. "Optimizing seismic hazard inputs for co-seismic landslide susceptibility mapping: a probabilistic analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8459-8481, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.
    2. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    3. Amin Hosseinpoor Milaghardan & Rahim Ali Abbaspour & Mina Khalesian, 2020. "Evaluation of the effects of uncertainty on the predictions of landslide occurrences using the Shannon entropy theory and Dempster–Shafer theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 49-67, January.
    4. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    5. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    6. Majid Roodposhti & Saeed Rahimi & Mansour Beglou, 2014. "PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 77-95, August.
    7. Fatiha Debiche & Mohammed Amin Benbouras & Alexandru-Ionut Petrisor & Lyes Mohamed Baba Ali & Abdelghani Leghouchi, 2024. "Advancing Landslide Susceptibility Mapping in the Medea Region Using a Hybrid Metaheuristic ANFIS Approach," Land, MDPI, vol. 13(6), pages 1-29, June.
    8. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    9. Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
    10. Vahid Nourani & Biswajeet Pradhan & Hamid Ghaffari & Seyed Sharifi, 2014. "Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 523-547, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04963-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.