IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04636-6.html
   My bibliography  Save this article

Study on stability of exit slope of Chenjiapo tunnel under extreme rainstorm conditions

Author

Listed:
  • Xiang Duan

    (Northwest A&F University)

  • Tian-shun Hou

    (Northwest A&F University)

  • Xiao-dong Jiang

    (Northwest A&F University)

Abstract

The exit slope of the Chenjiapo tunnel is located in Xuanen County, Hubei Province, China, and rainfall is one of the main factors inducing landslides. During the tunnel excavation, the left side of the front edge of the slope slid downward and caused a 6.27 × 104 m3-large landslide. Moreover, a 8.69 × 105 m3-large unstable slope was formed under the combined action of rainfall and the excavation. Because the front edge of the slope has been sliding, further tunnel excavation and extreme rainfall may induce massive landslides. This not only threatens the safe construction of the tunnel but also directly risks the operation safety of the expressway at a subsequent stage. To reveal the failure process of the Chenjiapo tunnel exit slope under extreme rainfall conditions, the slope stability is studied under five rainfall types and three rainfall intensities by conducting numerical simulations using the GeoStudio software. The results show that under the condition of front-peak rainfall, the safety factor of the slope first decreases and subsequently increases with increasing rainfall time. The slope is damaged at the 18th hour of the rainfall, and the plastic zone completely penetrates the upper soil layer at the end of the first day of the rainfall. In addition, the maximum horizontal displacement of the slope, which is up to 0.233 m, is the maximum among those under the five rainfall types. Under the conditions of equal-intensity, stepped, medium-peak, and back-peak rainfall, the safety factor of the slope decreases with increasing rainfall time. The slope begins to be destroyed between the second and the third days of the rainfall, and the plastic zone begins to be fully penetrated. Therefore, for the same rainfall time and total rainfall amount, the front-peak rainfall is the most harmful to the slope stability. Under 50, 70, and 90 mm/day rainfall intensities, the safety factor of the slope decreases with increasing rainfall time. Compared with the other two rain intensities, the slope is damaged first at the 27th hour under the 90 mm/day-rain intensity. At the end of the rainfall, the safety factor of the slope is the smallest under the rainfall intensity of 90 mm/day, which is 0.887. This indicates that a high rainfall intensity is associated with easy damage to the slope. After the rainfall, the safety factor of the slope immediately recovers, the horizontal displacement gradually rebounds, the distribution range of the plastic zone begins to decrease, and the slope returns to a stable state after 12 days of the rainfall ending. The exit slope of the Chenjiapo tunnel may fail under extreme rainfall conditions; therefore, it is urgent to adopt reinforcement measures, such as an anti-slide pile as the main support and drainage and sealing slope cracks as the auxiliary ones.

Suggested Citation

  • Xiang Duan & Tian-shun Hou & Xiao-dong Jiang, 2021. "Study on stability of exit slope of Chenjiapo tunnel under extreme rainstorm conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1387-1411, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04636-6
    DOI: 10.1007/s11069-021-04636-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04636-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04636-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangwang Zhou & Xulin Xu & Xiaoqing Li & Shiyun Li, 2023. "Analysis of the Interaction Damage Mechanism and Treatment Measures for an Underpass Landslide Tunnel: A Case from Southwest China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Hao Chen & Hongpeng Lai & Man Huang & Gang Wang & Qiang Tang, 2022. "Failure mechanism and treatment measures of supporting structures at the portal for a shallow buried and asymmetrically loaded tunnel with small clear-distance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2283-2310, November.
    3. Zhiye Wang & Chuanming Ma & Yang Qiu & Hanxiang Xiong & Minghong Li, 2022. "Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    4. Liping Zhu & Kejun Wen & Ruiming Tong & Mingdong Li, 2022. "Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil," Sustainability, MDPI, vol. 14(12), pages 1-9, June.
    5. Tian-shun Hou & Guang-li Xu & Da-qian Zhang & Hao-yu Liu, 2022. "Stability analysis of Gongjiacun landslide in the three Gorges Reservoir area under the action of reservoir water level fluctuation and rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1647-1683, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04636-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.