IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04617-9.html
   My bibliography  Save this article

Impact of sedimentation by check dam on the hydrodynamics in the channel on the Loess Plateau of China

Author

Listed:
  • Zhaohong Feng

    (Xi’an University of Technology)

  • Zhanbin Li

    (Xi’an University of Technology
    Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions)

  • Peng Shi

    (Xi’an University of Technology
    Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions)

  • Peng Li

    (Xi’an University of Technology
    Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions)

  • Tian Wang

    (Xi’an University of Technology)

  • Jinxiao Duan

    (Yellow River Engineering Consulting Co., Ltd.)

Abstract

The sedimentation by check dam in the channel affects hydrological process. In this study, the effects of the sedimentation on the dynamic process of runoff and erosion power were investigated by dynamic coupling models (MIKE SHE model and MIKE 11 model). The study area was located in Wangmaogou watershed in the Loess Plateau of China. Four scenarios including no check dam and check dam with siltation depths of 0, 4 and 8 m were designed to study the reduction effectiveness of check dam on the hydrodynamic processes. The research showed that the silt dam not only reduced the total volume flow rate of floods but also increased the flood duration and delayed the occurrence of flood peaks. The siltation depths of the dam influenced the flow velocity and runoff shear stress. With deposition, the channel was longer in 8 m siltation compared with 0 and 4 m siltation. The shear force and unit runoff power were remarkably reduced in the scenario of 8 m siltation, followed by 4 m, and lastly by 0 m. The dam system can still vastly reduce the flow velocity along the channel in the full state and decrease the maximum flow velocity along the channel by more than 50%. The decrease in flow velocity was the main reason for the decrease in the sediment-carrying capacity of the runoff, which directly reduced the runoff erosion intensity. This study provides the scientific basis for understanding the regulation of check dam and sedimentation on hydrological process.

Suggested Citation

  • Zhaohong Feng & Zhanbin Li & Peng Shi & Peng Li & Tian Wang & Jinxiao Duan, 2021. "Impact of sedimentation by check dam on the hydrodynamics in the channel on the Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 953-969, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04617-9
    DOI: 10.1007/s11069-021-04617-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04617-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04617-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. XEVI & K. Christiaens & A. Espino & W. Sewnandan & D. Mallants & H. Sørensen & J. Feyen, 1997. "Calibration, Validation and Sensitivity Analysis of the MIKE-SHE Model Using the Neuenkirchen Catchment as Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 219-242, June.
    2. El-Said Ahmed & Larry Mays, 2013. "Model for determining real-time optimal dam releases during flooding conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1849-1861, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Ki An & Muhammad Awais Javeed & Gimok Bae & Nimra Zubair & Ahmed Sayed M. Metwally & Patrizia Bocchetta & Fan Na & Muhammad Sufyan Javed, 2022. "Optimized Intersection Signal Timing: An Intelligent Approach-Based Study for Sustainable Models," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    2. Morteza Zargar & Hossein M. V. Samani & Ali Haghighi, 2016. "Optimization of gated spillways operation for flood risk management in multi-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 299-320, May.
    3. Debashish Goswami & Prasanta Kalita & Edward Mehnert, 2010. "Modeling and Simulation of Baseflow to Drainage Ditches During Low-flow Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 173-191, January.
    4. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    5. R. Vázquez & K. Beven & J. Feyen, 2009. "GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1325-1349, May.
    6. R. Vázquez Z & J. Feyen, 2002. "Assessment of the Performance of a Distributed Code in Relation to the ET p Estimates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(4), pages 329-350, August.
    7. A. Pryet & B. Labarthe & F. Saleh & M. Akopian & N. Flipo, 2015. "Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 139-159, January.
    8. R. Singh & R. Panda & K. Satapathy & S. Ngachan, 2012. "Runoff and Sediment Yield Modelling for a Treated Hilly Watershed in Eastern Himalaya Using the Water Erosion Prediction Project Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 643-665, February.
    9. Gajanan Ramteke & R. Singh & C. Chatterjee, 2020. "Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4233-4252, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04617-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.