IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i1d10.1007_s11069-020-04487-7.html
   My bibliography  Save this article

Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors?

Author

Listed:
  • A. Schekotov

    (The Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (IPE RAS))

  • M. Hayakawa

    (Hayakawa Institute of Seismo Electromagnetics, Co. Ltd. (Hi-SEM), UEC (University of Electro-Communications) Alliance Center #521
    UEC, Advanced Wireless and Communications Research Center (AWCC))

  • S. M. Potirakis

    (University of West Attica)

Abstract

The aim of this work is to study the relationship between the pre-earthquake emissions of radon and ULF/ELF (1–30 Hz) atmospheric electromagnetic radiation. The problem is considered on the example of the 2011 Tohoku earthquake. Radon, ionizing air, creates ions—centers of condensation of water vapor. As a result of condensation, heat is generated. It results in growth of air temperature and decrease in its humidity. This phenomenon serves as an indicator of air ionization. We used data from 20 Japan Meteorological Agency (JMA) weather stations located on Honshu Island to estimate any changes in temperature and humidity over ± 20 days from the date of the main shock. At the same time, we monitored the intensity and location of the source of ULF/ELF radiation using three induction magnetometers belonging to Chubu University. We compared the times and locations of observed signs of ionization and electromagnetic radiation to find out their relationship. It turned out that they are independent, since their dates and localizations do not match. In addition, we found intense ionization of the air after March 11 over a large area of Honshu Island, caused by radiative radiation from the nuclear disaster at the Fukushima Daiichi nuclear power plant. However, this phenomenon did not cause low-frequency atmospheric electromagnetic radiation either. These suggest that there is no direct relationship between air ionization and ULF/ELF radiation. This is true at least for this case, given the island nature of the land and oceanic EQs.

Suggested Citation

  • A. Schekotov & M. Hayakawa & S. M. Potirakis, 2021. "Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 701-714, March.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:1:d:10.1007_s11069-020-04487-7
    DOI: 10.1007/s11069-020-04487-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04487-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04487-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Schekotov & D. Chebrov & M. Hayakawa & G. Belyaev & N. Berseneva, 2020. "Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 735-755, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinan Keskin & Fatih Külahcı, 2023. "ARIMA model simulation for total electron content, earthquake and radon relationship identification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1955-1976, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:1:d:10.1007_s11069-020-04487-7. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.