Author
Listed:
- Veysel Isik
(Ankara University, Tectonics Research Group)
- Reza Saber
(Ankara University, Tectonics Research Group)
- Ayse Caglayan
(Ankara University, Tectonics Research Group
Ministry of Environment and Urbanisation, General Directorate of Spatial Planning, Department of Geological Survey)
Abstract
The arc-shaped Bozgush Mountains is a remarkable morphological feature bounded by active faults in northwest Iran. The southern and northern parts of the mountain belt are limited by the South and North Bozgush Fault Zones, which produced numerous destructive earthquakes in historical and instrumental periods. We employed the Sentinel-1A Differential Interferometric Synthetic Aperture Radar (DInSAR) method to map the deformation details of the November 08, 2019, Turkmanchay earthquake (Mw: 5.9) along the South Bozgush Fault Zone to understand the earthquake-triggered surface deformations and seismogenic faulting characteristics. The results of the DInSAR time-series analysis show that subsidence and uplift range from − 5 cm to + 6 cm, respectively. The total line of sight (LOS) displacement was approximately 11 cm. Interferogram fringes and deformation patterns indicate that the direction of the potential seismogenic fault is WNW-ESE. These patterns are consistent with the orientation of the South Bozgush Fault Zone, including primarily right-lateral strike-slip characteristics with reverse components. Continuous patterns of the obtained interferogram fringes indicate that surface rupture did not occur during the earthquake. Our Coulomb failure function results in preferred faults derived from geological structures, indicating that the stress rate was positive and high in several segments of the South and North Bozgush Faults, revealing that the main earthquake event might trigger those faults. The large aftershocks that occurred on the same faults supported our results, and the distribution of aftershocks in the Bozgush Mountains suggests that the WNW-ESE orientation is consistent with the orientation of segments constituting the South Bozgush Fault Zone.
Suggested Citation
Veysel Isik & Reza Saber & Ayse Caglayan, 2021.
"November 08, 2019 Turkmanchay earthquake (Mw: 5.9) in NW Iran: an assessment of the earthquake using DInSAR time-series and field evidence,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3013-3037, February.
Handle:
RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04439-1
DOI: 10.1007/s11069-020-04439-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04439-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.