IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i3d10.1007_s11069-020-04147-w.html
   My bibliography  Save this article

Coastal tectonics and habitat squeeze: response of a tidal lagoon to co-seismic sea-level change

Author

Listed:
  • Shane Orchard

    (University of Canterbury and Lincoln University
    University of Canterbury)

  • Kenneth F. D. Hughey

    (Lincoln University
    Department of Conservation)

  • Richard Measures

    (National Institute of Water and Atmospheric Research (NIWA))

  • David R. Schiel

    (University of Canterbury)

Abstract

We investigated the response of a tidal lagoon system to a unique situation of relative sea-level change induced by powerful earthquakes (up to Mw 7.1) on the east coast of New Zealand in 2010–2011. Spatiotemporal impacts were quantified using airborne light detection and ranging (LiDAR) datasets complemented by hydrodynamic modelling and evaluation of anthropogenic influences. Ground-level changes included examples of uplift and extensive subsidence (ca. 0.5 m) associated with intertidal area reductions, particularly in supratidal zones. ‘Coastal squeeze’ effects occurred where incompatible infrastructure prevented upland ecosystem movement with relative sea-level rise. Despite large-scale managed retreat, legacy effects of land-filling have reduced the reversibility of human modifications, impairing system resiliency through poor land-use design. Elsewhere, available space in the intertidal range shows that natural environment movement could be readily assisted by simple engineering techniques though is challenged by competing land-use demands. Quantification of gains and losses showed that lagoon expansion into previously defended areas is indeed required to sustain critical habitats, highlighting the importance of a whole-system view. Identifiable coastal planning principles include the need to assess trade-offs between natural and built environments in the design of hazard management plans, requiring greater attention to the natural movement of ecosystems and areas involved. Treating these observations as a scenario illustrates the mechanisms by which coastal squeeze effects may develop under global sea-level rise, but our purpose is to help avoid them by identifying appropriate human responses. We highlight the need for an improved focus on whole-system resilience, and the importance of disaster recovery processes for adaptation to climate change.

Suggested Citation

  • Shane Orchard & Kenneth F. D. Hughey & Richard Measures & David R. Schiel, 2020. "Coastal tectonics and habitat squeeze: response of a tidal lagoon to co-seismic sea-level change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3609-3631, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04147-w
    DOI: 10.1007/s11069-020-04147-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04147-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04147-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costanza, Robert, 1998. "The value of ecosystem services," Ecological Economics, Elsevier, vol. 25(1), pages 1-2, April.
    2. Robert J. Nicholls & Susan E. Hanson & Jason A. Lowe & Richard A. Warrick & Xianfu Lu & Antony J. Long, 2014. "Sea‐level scenarios for evaluating coastal impacts," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(1), pages 129-150, January.
    3. Kerrylee Rogers & Jeffrey J. Kelleway & Neil Saintilan & J. Patrick Megonigal & Janine B. Adams & James R. Holmquist & Meng Lu & Lisa Schile-Beers & Atun Zawadzki & Debashish Mazumder & Colin D. Woodr, 2019. "Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise," Nature, Nature, vol. 567(7746), pages 91-95, March.
    4. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    5. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    6. Martinez, M.L. & Intralawan, A. & Vazquez, G. & Perez-Maqueo, O. & Sutton, P. & Landgrave, R., 2007. "The coasts of our world: Ecological, economic and social importance," Ecological Economics, Elsevier, vol. 63(2-3), pages 254-272, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    2. repec:ags:aaea22:335970 is not listed on IDEAS
    3. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Watson, Stephen C.L. & Paterson, David M. & Queirós, Ana M. & Rees, Andrew P. & Stephens, Nicholas & Widdicombe, Stephen & Beaumont, Nicola J., 2016. "A conceptual framework for assessing the ecosystem service of waste remediation: In the marine environment," Ecosystem Services, Elsevier, vol. 20(C), pages 69-81.
    5. Tracy Elsey-Quirk & Austin Lynn & Michael Derek Jacobs & Rodrigo Diaz & James T. Cronin & Lixia Wang & Haosheng Huang & Dubravko Justic, 2024. "Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    7. Fan Xu & Zeng Zhou & Sergio Fagherazzi & Andrea D’Alpaos & Ian Townend & Kun Zhao & Weiming Xie & Leicheng Guo & Xianye Wang & Zhong Peng & Zhicheng Yang & Chunpeng Chen & Guangcheng Cheng & Yuan Xu &, 2024. "Anomalous scaling of branching tidal networks in global coastal wetlands and mudflats," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Shufen Pang & Mazlinawati Abdul Majid & Hadinnapola Appuhamilage Chintha Crishanthi Perera & Mohammad Saydul Islam Sarkar & Jia Ning & Weikang Zhai & Ran Guo & Yuncheng Deng & Haiwen Zhang, 2024. "A Systematic Review and Global Trends on Blue Carbon and Sustainable Development: A Bibliometric Study from 2012 to 2023," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
    9. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    10. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Marc J. S. Hensel & Brian R. Silliman & Johan Koppel & Enie Hensel & Sean J. Sharp & Sinead M. Crotty & Jarrett E. K. Byrnes, 2021. "A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yaoshen Fan & Shoubing Yu & Jinghao Wang & Peng Li & Shenliang Chen & Hongyu Ji & Ping Li & Shentang Dou, 2022. "Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation," Land, MDPI, vol. 11(10), pages 1-14, September.
    14. Maricar Aguilos & Charlton Brown & Kevan Minick & Milan Fischer & Omoyemeh J. Ile & Deanna Hardesty & Maccoy Kerrigan & Asko Noormets & John King, 2021. "Millennial-Scale Carbon Storage in Natural Pine Forests of the North Carolina Lower Coastal Plain: Effects of Artificial Drainage in a Time of Rapid Sea Level Rise," Land, MDPI, vol. 10(12), pages 1-19, November.
    15. Rojas, Carolina & Munizaga, Juan & Rojas, Octavio & Martínez, Carolina & Pino, Joan, 2019. "Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning," Land Use Policy, Elsevier, vol. 80(C), pages 47-56.
    16. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    17. Wang, Han & Tian, Fuan & Wu, Jianxian & Nie, Xin, 2023. "Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view," World Development, Elsevier, vol. 161(C).
    18. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    19. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    20. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    21. repec:dgr:rugcds:200218 is not listed on IDEAS
    22. Alexandru-Ionuţ Petrişor & Walid Hamma & Huu Duy Nguyen & Giovanni Randazzo & Anselme Muzirafuti & Mari-Isabella Stan & Van Truong Tran & Roxana Aştefănoaiei & Quang-Thanh Bui & Dragoş-Florian Vintilă, 2020. "Degradation of Coastlines under the Pressure of Urbanization and Tourism: Evidence on the Change of Land Systems from Europe, Asia and Africa," Land, MDPI, vol. 9(8), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04147-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.