IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i1d10.1007_s11069-020-04027-3.html
   My bibliography  Save this article

Experimental study of force, pressure, and fluid velocity on a simplified coastal building under tsunami bore impact

Author

Listed:
  • Wei-Liang Chuang

    (Texas A&M University
    National Sun Yat-sen University)

  • Kuang-An Chang

    (Texas A&M University
    Texas A&M University)

  • James Kaihatu

    (Texas A&M University)

  • Rodrigo Cienfuegos

    (Pontificia Universidad Católica de Chile
    Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), ANID/Fondap/15110017)

  • Cyril Mokrani

    (Pontificia Universidad Católica de Chile)

Abstract

The present study experimentally investigated the flow kinematics and hydrodynamic pressures and forces on a simplified coastal building under tsunami bore impact. A rectangular structure sitting on a 1/10 sloping beach at four different headings, at 0°, 15°, 30° and 45°, was considered under bore impacts. The input wave condition was designed to generate a tsunami bore traveling at high speed on a sloping beach. The interaction between bore and structure (oriented at four different headings) was investigated using the nonintrusive bubble image velocimetry technique that enables the quantitative visualization of the full-field flow behavior. Simultaneous measurements of forces and pressures during the impacts were correlated with the measured flow velocities. As the tsunami bore is highly turbulent, ensemble averages from repeated tests were obtained for the investigation. To model the interaction, the validity of a dam break solution for a sloping bed as a suitable representation was examined, while the initial water depth was approximated using wave properties and calibrated with measured bore celerity. The study found that the profile of peak impact pressures is similar to a hydrostatic distribution for each heading, but one order of magnitude greater than the hydrostatic pressure. Similar linear distribution is also found in the correlation between peak impact pressure and angle of heading. By correlating the peak impact pressures with the impact velocity, the impact coefficient was estimated as 0.55. The measured pressures were further applied to model the surge force. By examining the peak surge forces against the heading angle, the lowest magnitude occurred when the structure was orientated at 30°.

Suggested Citation

  • Wei-Liang Chuang & Kuang-An Chang & James Kaihatu & Rodrigo Cienfuegos & Cyril Mokrani, 2020. "Experimental study of force, pressure, and fluid velocity on a simplified coastal building under tsunami bore impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1093-1120, August.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04027-3
    DOI: 10.1007/s11069-020-04027-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04027-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04027-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Spreitzer & Diego Ravazzolo & Jon Tunnicliffe & Heide Friedrich, 2022. "Measuring the impact: new insights into flood-borne large wood collisions with river structures using an isolated sensor-unit," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1495-1517, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04027-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.