IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i1d10.1007_s11069-020-04019-3.html
   My bibliography  Save this article

Study of shaking table test of seismic subsidence loess landslides induced by the coupling effect of earthquakes and rainfall

Author

Listed:
  • Xiaowu Pu

    (Lanzhou Institute of Seismology, CEA
    Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province)

  • Lanmin Wang

    (Lanzhou Institute of Seismology, CEA
    Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province)

  • Ping Wang

    (Lanzhou Institute of Seismology, CEA
    Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province)

  • Shaofeng Chai

    (Lanzhou Institute of Seismology, CEA
    Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province)

Abstract

Light rain or moderate rain is the most common meteorological event in the rainy season in the loess area of China, so the probability of landslide hazards induced by the coupling effect of earthquakes and rainfall under the condition of light rain or moderate rain is relatively higher than that under heavy rain. To study the dynamic response characteristics and instability mechanism of loess slopes by the coupling effect of earthquakes and rainfall under the conditions of moderate rain and light rain, a low-angle slope model test of a large-scale shaking table after 10 mm of rainfall was carried out. By gradually increasing the dynamic loading, the evolution of the macroscopic deformation and the instability failure mode of the slope model are observed; the temporal and spatial trends of the amplification effect, acceleration spectrum, pore pressure and soil pressure are analyzed; and the failure mechanism of the slope is determined. The results showed that the amplification effect increased along the slope surface upward, and a strong amplification effect appeared at the front of the top of the slope. Because of the stronger dynamic stress action on the upper part of the slope, the immersed soil in the upper part of the slope experienced seismic subsidence deformation, the saturation in the seismic subsidence soil increased, and the water content temporarily increased locally. With the further increase in the loading intensity, a large number of tension cracks were generated in the seismic subsidence area, and water infiltrated down along the cracks and the wetting range expanded under dynamic action. The range of seismic subsidence and cracks further extended to the deep part of the slope. Under the reciprocating action of the subsequent ground motion, the swing amplitude of the soil mass in the seismic subsidence area, which is divided by a large number of cracks in the upper part of the slope, increased further, resulting in the further reduction in the residual strength of the seismic subsidence soil mass located at the crack tip due to the pull and shear action. Finally, under the combined action of gravity and dynamic force, the upper soil mass in the seismic subsidence area dragged the lower soil mass in the seismic subsidence area downward because the sliding force is greater than the residual strength of the soil mass, which induced a seismic subsidence-type loess landslide. Under the coupling effect of earthquakes and rainfall, the instability mode and mechanism of this landslide are significantly different from those of liquefaction-type landslides.

Suggested Citation

  • Xiaowu Pu & Lanmin Wang & Ping Wang & Shaofeng Chai, 2020. "Study of shaking table test of seismic subsidence loess landslides induced by the coupling effect of earthquakes and rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 923-945, August.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04019-3
    DOI: 10.1007/s11069-020-04019-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04019-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04019-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijia Tan & Qiangbing Huang & Xing Chen, 2022. "Physical Model Test on the Interface of Loess Fill Slope," Land, MDPI, vol. 11(8), pages 1-17, August.
    2. Yang Xinglong & Dong Jinyu & Liu Handong & Bian Shuokang, 2024. "Seismic dynamic response characteristics and failure mechanisms of an accumulation body slope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8239-8261, July.
    3. B. Zhao & Y. Q. Zhao, 2020. "Investigation and analysis of the Xiangning landslide in Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3837-3845, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04019-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.