IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v102y2020i3d10.1007_s11069-020-03947-4.html
   My bibliography  Save this article

Migration mechanism of fine particles in aquifer during water injection

Author

Listed:
  • Mingze Du

    (China Coal Research Institute
    State Key Lab of Coal Resource High Efficient Mining and Clean Utilization (China Coal Research Institute)
    Liaoning Technical University)

  • Bin Gong

    (Nagasaki University
    Shandong University of Science and Technology)

  • Yanchun Xu

    (China University of Mining and Technology)

  • Zhao Zhao

    (China University of Mining and Technology)

  • Luoxun Zhang

    (China University of Mining and Technology)

Abstract

Water injection in aquifers to stabilize water level is a novel method to prevent shaft failure. However, with the progression of water injection, the flow rate of water injection decreases gradually. Through analysis, it is considered that the fine particles in sand migrate to form a dense structure, which hinders the increase of water flow. In order to investigate the migration mechanism of fine particles in the aquifer during water injection, experimental tests and numerical simulations were conducted in the present study. First, the physical experiment was designed, and it was shown that the water pressure difference between the two pressure gauges gradually decreased, while the water flow rate per hour slowly decreased. Furthermore, the permeability coefficient of sand near the outlet became smaller and smaller with the migration of fine particles, which indicated that the fine particles among sand grains migrated gradually from the water injection inlet to the outlet. Additionally, the water flow channels formed slowly. Then, the microscopic mechanism of fine particle migration was studied using particle flow code numerical simulation. During water injection, water pressure and porosity of sand decreased from the water injection inlet to the outlet, while the coordination number of particles increased on the whole. Contact force chain gradually strengthened near the outlet side during water injection. The trends of force chain distribution, the coordination number distributions and the evolution of porosity were consistent, which highlighted the process of fine particles migrating from the injection inlet to the outlet in the aquifer.

Suggested Citation

  • Mingze Du & Bin Gong & Yanchun Xu & Zhao Zhao & Luoxun Zhang, 2020. "Migration mechanism of fine particles in aquifer during water injection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1095-1116, July.
  • Handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03947-4
    DOI: 10.1007/s11069-020-03947-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03947-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03947-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Chen & Jian Zhou & Tao Zhou & Weixun Yong, 2021. "Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1457-1479, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03947-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.