IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v102y2020i2d10.1007_s11069-019-03756-4.html
   My bibliography  Save this article

Inter-comparison of model, satellite and in situ tropical cyclone heat potential in the North Indian Ocean

Author

Listed:
  • Babita Jangir

    (Indian Institute of Technology Bhubaneswar)

  • D. Swain

    (Indian Institute of Technology Bhubaneswar)

  • Samar Kumar Ghose

    (Indian Institute of Technology Bhubaneswar)

  • Rishav Goyal

    (Indian Institute of Technology Bhubaneswar)

  • T. V. S. Udaya Bhaskar

    (Indian National Centre for Ocean Information Services (MoES))

Abstract

The North Indian Ocean (NIO) experiences frequent tropical cyclones (TCs). TC heat potential (TCHP) is a major ocean parameter responsible for TC genesis and intensification changes. In this study, Indian National Centre for Ocean Information Services-Global Ocean Data Assimilation System (INCOIS-GODAS) model and satellite-derived TCHP data from National Remote Sensing Centre (NRSC) and National Oceanic and Atmospheric Administration (NOAA) are validated against TCHP from in situ profiles in the NIO during the period 2011–2013 for buoys and during 2005–2015 for Argo data. Data from eight moored buoys (6 in Bay of Bengal and 2 in Arabian Sea) under the Ocean Moored Buoy Network are used. Comparison of model and in situ TCHP yields correlation coefficients (root-mean-square errors in kJ/cm2) of 0.74 (17.75), 0.59 (15.34), 0.70 (17.68), 0.60 (22.24), 0.57 (19.52), 0.73 (17.88) and 0.77 (39.17) at buoy locations BD08, BD09, BD10, BD11, BD13, AD06 and AD10. The scatter indices between collocated TCHP values at these locations were 0.32, 0.22, 0.30, 0.30, 0.31, 0.58 and 0.41. Further, it was found that satellite-based TCHP from NRSC match better with in situ as compared to near-real-time TCHP data obtained from NOAA. TCHP from INCOIS-GODAS model, NOAA delayed time data and NRSC TCHP data set are also in good agreement with those from Argo profiles. As a case study, model and in situ TCHP were compared during a TC, “Thane” at two buoy locations (BD11 and BD13), closest to its track. The analysis revealed underestimation of model TCHP at BD11, but good correlation at BD13. This could be attributed to the existence of a strong temperature inversion at BD11. It is observed that although the model is able to capture features like barrier and inversion layers, the temperature and depth of such layers are underestimated. Further, the recovery time from the influence of TC on the ocean subsurface is also much longer in case of the model which thus needs to be fine-tuned. Seasonal comparison of TCHP from various sources with in situ estimated TCHP also shows better correlation between all the products for the pre-summer monsoon compared to the post-summer monsoon season.

Suggested Citation

  • Babita Jangir & D. Swain & Samar Kumar Ghose & Rishav Goyal & T. V. S. Udaya Bhaskar, 2020. "Inter-comparison of model, satellite and in situ tropical cyclone heat potential in the North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 557-574, June.
  • Handle: RePEc:spr:nathaz:v:102:y:2020:i:2:d:10.1007_s11069-019-03756-4
    DOI: 10.1007/s11069-019-03756-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03756-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03756-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Sumesh & M. Ramesh Kumar, 2013. "Tropical cyclones over north Indian Ocean during El-Niño Modoki years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1057-1074, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    2. Thushani Suleka Madhubhashini Elepathage & Danling Tang & Leo Oey, 2019. "The Pelagic Habitat of Swordfish ( Xiphias gladius ) in the Changing Environment of the North Indian Ocean," Sustainability, MDPI, vol. 11(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:2:d:10.1007_s11069-019-03756-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.