IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v101y2020i3d10.1007_s11069-020-03903-2.html
   My bibliography  Save this article

Tsunami evacuation simulation considering road blockage by collapsed buildings evaluated from predicted strong ground motion

Author

Listed:
  • Eri Ito

    (Kyoto University)

  • Hiroshi Kawase

    (Kyoto University)

  • Shinichi Matsushima

    (Kyoto University)

  • Michinori Hatayama

    (Kyoto University)

Abstract

Tsunami evacuation simulations are often used to determine necessary countermeasures that will reduce human loss effectively after earthquakes and subsequent tsunamis. However, so far there has been no simulation for the estimated building damage using up-to-date knowledge of seismic engineering. In this study, in order to clarify the effect of building damage on a tsunami evacuation, we first predicted building damage based on the nonlinear response analysis for a realistic strong ground motion and then simulated a tsunami evacuation considering road blockage due to the collapsed buildings. We used one district in Tanabe City in Wakayama Prefecture in Japan where we expect to have a 12 m of tsunami height after an earthquake along the Nankai Trough plate boundary. We found that the prepared capacity of evacuation sites is not enough to let everyone evacuate and that the number of survivors increases by 3–4% if all of the buildings and houses are seismically reinforced. Considering this, plus 1% of expected casualties inside the collapsed houses, it appears to be not as efficient to reinforce buildings and houses to prevent human loss in comparison with increasing the capacity of tsunami evacuation sites in the target district. However, the damage to building and houses will cause a lot of side effects which are not considered here, but will prolong the evacuation time. Thus, we concluded that we need to reinforce the buildings and houses as well as consider the appropriate placement, number, and capacity of the evacuation sites.

Suggested Citation

  • Eri Ito & Hiroshi Kawase & Shinichi Matsushima & Michinori Hatayama, 2020. "Tsunami evacuation simulation considering road blockage by collapsed buildings evaluated from predicted strong ground motion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 959-980, April.
  • Handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03903-2
    DOI: 10.1007/s11069-020-03903-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03903-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03903-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karel Mls & Milan Kořínek & Kamila Štekerová & Petr Tučník & Vladimír Bureš & Pavel Čech & Martina Husáková & Peter Mikulecký & Tomáš Nacházel & Daniela Ponce & Marek Zanker & František Babič & Ioanna, 2023. "Agent-based models of human response to natural hazards: systematic review of tsunami evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1887-1908, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03903-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.