Author
Listed:
- Gianluca Torta
(University of Bologna Alma Mater Studiorum)
- Luca Ciacci
(University of Bologna Alma Mater Studiorum)
- Ivano Vassura
(University of Bologna Alma Mater Studiorum)
- Fabrizio Passarini
(University of Bologna Alma Mater Studiorum)
Abstract
Rare earth elements (REEs) are fundamental for various modern technologies and industrial applications. One significant application of REEs is in the production of neodymium-iron-boron (NdFeB) magnets, which are key components in electric vehicles (EVs), wind turbines, and electronic devices. These applications play a crucial role in driving the ecological and digital transition, highlighting the significance of REEs as strategic materials. With the dominance of very few countries in the REEs global supply and the rising of EVs demand, several concerns regarding resource availability, supply chain security, and price volatility have heightened the importance of efficient NdFeB magnet recycling, especially in Europe. This study assessed the elemental recycling potential of REEs from EV components through collaboration with authorized treatment facilities and metal recyclers in Italy. The study focused on three representative electric vehicles: a compact car, a van, and a hybrid vehicle. NdFeB magnets were found in various components, including the electric drive motor, air conditioning system, electric power steering, alternator, and electric gear box. The content of NdFeB magnets and REEs inside these components has been determined and economic feasibility of their recycling has been estimated by considering the intrinsic value of the raw materials contained. Despite being preliminary results, the economic value of REEs and Cu recoverable attested a promising potential for recycling, while the direct dismantling of magnets from the engine proves economically unviable for the studied components. Therefore, the study emphasizes the need for the development of specific recycling processes such as demagnetization and mechanical processing of the motors. The study also analysed the dismantling times of the target components from the vehicle and their relative economic impact on the potential for recovery.
Suggested Citation
Gianluca Torta & Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2024.
"Exploring mass and economic potentials of rare earth elements recycling from electric vehicles at end-of-life,"
Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(3), pages 573-587, September.
Handle:
RePEc:spr:minecn:v:37:y:2024:i:3:d:10.1007_s13563-024-00433-2
DOI: 10.1007/s13563-024-00433-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:37:y:2024:i:3:d:10.1007_s13563-024-00433-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.