IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i2d10.1007_s00184-024-00963-3.html
   My bibliography  Save this article

Optimality and constructions of spanning bipartite block designs

Author

Listed:
  • Shoko Chisaki

    (Osaka Institute of Technology)

  • Ryoh Fuji-Hara

    (University of Tsukuba)

  • Nobuko Miyamoto

    (Tokyo University of Science)

Abstract

We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph $$K_{v_1, v_2}=(V_1, V_2;E)$$ K v 1 , v 2 = ( V 1 , V 2 ; E ) . Each data is obtained as a sum of selected effects, a subset of E. To estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of $$K_{v_1, v_2}$$ K v 1 , v 2 ) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an ( $$r,\lambda $$ r , λ )-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD.

Suggested Citation

  • Shoko Chisaki & Ryoh Fuji-Hara & Nobuko Miyamoto, 2025. "Optimality and constructions of spanning bipartite block designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(2), pages 247-265, February.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:2:d:10.1007_s00184-024-00963-3
    DOI: 10.1007/s00184-024-00963-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-024-00963-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-024-00963-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:2:d:10.1007_s00184-024-00963-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.