Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
Author
Abstract
Suggested Citation
DOI: 10.1007/s00184-020-00797-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Müller, Hans-Georg & Yao, Fang, 2008. "Functional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1534-1544.
- Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
- Hongxiao Zhu & Fang Yao & Hao Helen Zhang, 2014. "Structured functional additive regression in reproducing kernel Hilbert spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 581-603, June.
- Hans-Georg Müller & Yichao Wu & Fang Yao, 2013. "Continuously additive models for nonlinear functional regression," Biometrika, Biometrika Trust, vol. 100(3), pages 607-622.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
- Lin, Hongmei & Jiang, Xuejun & Lian, Heng & Zhang, Weiping, 2019. "Reduced rank modeling for functional regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 205-217.
- Wang, Bo & Xu, Aiping, 2019. "Gaussian process methods for nonparametric functional regression with mixed predictors," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 80-90.
- Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
- Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
- Liu, Yuzi & Peng, Ling & Liu, Qing & Lian, Heng & Liu, Xiaohui, 2023. "Functional additive expectile regression in the reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
- Sang, Peijun & Lockhart, Richard A. & Cao, Jiguo, 2018. "Sparse estimation for functional semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 105-118.
- Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
- F. Ferraty & A. Goia & E. Salinelli & P. Vieu, 2013. "Functional projection pursuit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 293-320, June.
- Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
- Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.
- Bergsma, Wicher P, 2020. "Regression with I-priors," Econometrics and Statistics, Elsevier, vol. 14(C), pages 89-111.
- Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
- C. Abraham & G. Biau & B. Cadre, 2006. "On the Kernel Rule for Function Classification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 619-633, September.
- Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
- Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
- François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
More about this item
Keywords
Convergence rate; Functional data; Reproducing kernel Hilbert space;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:3:d:10.1007_s00184-020-00797-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.