IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v6y2004i4d10.1023_bmcap.0000045087.33227.8c.html
   My bibliography  Save this article

Multiple Window and Cluster Size Scan Procedures

Author

Listed:
  • Joseph I. Naus

    (Rutgers the State University of New Jersey, Hill Center, Busch Campus)

  • Sylvan Wallenstein

    (Mount Sinai School of Medicine)

Abstract

Researchers apply scan statistics to test for unusually large clusters of events within a time window of specified length w, or alternatively an unusually small window w that contains a specified number of events. In some cases, the researcher is interested in testing for a range of specified window lengths, or a set of several specified number of events k (cluster sizes). In this paper, we derive accurate approximations for the joint distributions of scan statistics for a range of values of w, or of k, that can be used to set an experiment-wide level of significance that takes into account the multiple comparisons involved. We use these methods to compare different ways of choosing the window sizes for the different cluster sizes. One special case is a multiple comparison procedure based on a generalized likelihood ratio test (GLRT) for a range of window sizes. We compare the power of the GLRT with another method for allocating the window sizes. We find that the GLRT is sensitive for very small window sizes at the expense of moderate and larger window sizes. We illustrate these results on two examples, one involving clustering of translocation breakpoints in DNA, and the other involving disease clusters.

Suggested Citation

  • Joseph I. Naus & Sylvan Wallenstein, 2004. "Multiple Window and Cluster Size Scan Procedures," Methodology and Computing in Applied Probability, Springer, vol. 6(4), pages 389-400, December.
  • Handle: RePEc:spr:metcap:v:6:y:2004:i:4:d:10.1023_b:mcap.0000045087.33227.8c
    DOI: 10.1023/B:MCAP.0000045087.33227.8c
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:MCAP.0000045087.33227.8c
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:MCAP.0000045087.33227.8c?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segal M. R. & Wiemels J. L., 2002. "Clustering of Translocation Breakpoints," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 66-76, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tung-Lung & Glaz, Joseph, 2015. "A new adaptive procedure for multiple window scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 164-172.
    2. Markos V. Koutras & Demetrios P. Lyberopoulos, 2018. "Asymptotic results for jump probabilities associated to the multiple scan statistic," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 951-968, October.
    3. Yi-Shen Lin & Xenos Chang-Shuo Lin & Daniel Wei-Chung Miao & Yi-Ching Yao, 2020. "Corrected Discrete Approximations for Multiple Window Scan Statistics of One-Dimensional Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 237-265, March.
    4. Guenther Walther & Andrew Perry, 2022. "Calibrating the scan statistic: Finite sample performance versus asymptotics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1608-1639, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:6:y:2004:i:4:d:10.1023_b:mcap.0000045087.33227.8c. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.