IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i1d10.1007_s11009-024-10077-y.html
   My bibliography  Save this article

On Survival of Coherent Systems Subject to Random Shocks

Author

Listed:
  • Dheeraj Goyal

    (Indian Institute of Technology Jodhpur)

  • Nil Kamal Hazra

    (Indian Institute of Technology Jodhpur
    Indian Institute of Technology Jodhpur)

  • Maxim Finkelstein

    (University of the Free State
    University of Strathclyde)

Abstract

We consider coherent systems subject to random shocks that can damage a random number of components of a system. Based on the distribution of the number of failed components, we discuss three models, namely, (i) a shock can damage any number of components (including zero) with the same probability, (ii) each shock damages, at least, one component, and (iii) a shock can damage, at most, one component. Shocks arrival times are modeled using three important counting processes, namely, the Poisson generalized gamma process, the Poisson phase-type process and the renewal process with matrix Mittag-Leffler distributed inter-arrival times. For the defined shock models, we discuss relevant reliability properties of coherent systems. An optimal replacement policy for repairable systems is considered as an application of the proposed modeling.

Suggested Citation

  • Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2024. "On Survival of Coherent Systems Subject to Random Shocks," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-29, March.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10077-y
    DOI: 10.1007/s11009-024-10077-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10077-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10077-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10077-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.