IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09866-6.html
   My bibliography  Save this article

Asymptotics of Running Maxima for φ-Subgaussian Random Double Arrays

Author

Listed:
  • Nour Al Hayek

    (University of Regina)

  • Illia Donhauzer

    (La Trobe University)

  • Rita Giuliano

    (Università di Pisa)

  • Andriy Olenko

    (La Trobe University)

  • Andrei Volodin

    (University of Regina)

Abstract

The article studies the running maxima Y m , j = max 1 ≤ k ≤ m , 1 ≤ n ≤ j X k , n − a m , j $Y_{m,j}=\max_{1 \le k \le m, 1 \le n \le j} X_{k,n} - a_{m,j}$ where {Xk,n,k ≥ 1,n ≥ 1} is a double array of φ-subgaussian random variables and {am,j,m ≥ 1,j ≥ 1} is a double array of constants. Asymptotics of the maxima of the double arrays of positive and negative parts of {Ym,j,m ≥ 1,j ≥ 1} are studied, when {Xk,n,k ≥ 1,n ≥ 1} have suitable “exponential-type” tail distributions. The main results are specified for various important particular scenarios and classes of φ-subgaussian random variables.

Suggested Citation

  • Nour Al Hayek & Illia Donhauzer & Rita Giuliano & Andriy Olenko & Andrei Volodin, 2022. "Asymptotics of Running Maxima for φ-Subgaussian Random Double Arrays," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1341-1366, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09866-6
    DOI: 10.1007/s11009-021-09866-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09866-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09866-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Csáki, Endre & Gonchigdanzan, Khurelbaatar, 2002. "Almost sure limit theorems for the maximum of stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 195-203, June.
    2. Yuriy Kozachenko & Andriy Olenko & Olga Polosmak, 2015. "Convergence in L p ([0, T]) of Wavelet Expansions of φ-Sub-Gaussian Random Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 139-153, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    2. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    3. Tan, Zhongquan, 2013. "An almost sure limit theorem for the maxima of smooth stationary Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2135-2141.
    4. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    5. Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
    6. Moon, Hee-Jin & Choi, Yong-Kab, 2007. "Asymptotic properties for partial sum processes of a Gaussian random field," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 9-18, January.
    7. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    8. Dudzinski, Marcin, 2008. "The almost sure central limit theorems in the joint version for the maxima and sums of certain stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 347-357, March.
    9. Chen, Shouquan & Lin, Zhengyan, 2006. "Almost sure max-limits for nonstationary Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1175-1184, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09866-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.