IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i2d10.1007_s11009-019-09757-x.html
   My bibliography  Save this article

Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling

Author

Listed:
  • F. Seitl

    (Charles University Prague)

  • L. Petrich

    (Ulm University)

  • J. Staněk

    (Charles University Prague)

  • C. E. Krill

    (Ulm University)

  • V. Schmidt

    (Charles University Prague)

  • V. Beneš

    (Charles University Prague)

Abstract

Random tessellations are well suited for probabilistic modeling of three-dimensional (3D) grain microstructures of polycrystalline materials. The present paper is focused on so-called Gibbs-Laguerre tessellations, in which the generators of the Laguerre tessellation form a Gibbs point process. The goal is to construct an energy function of the Gibbs point process such that the resulting tessellation matches some desired geometrical properties. Since the model is analytically intractable, our main tool of analysis is stochastic simulation based on Markov chain Monte Carlo. Such simulations enable us to investigate the properties of the models, and, in the next step, to apply the knowledge gained to the statistical reconstruction of the 3D microstructure of an aluminum alloy extracted from 3D tomographic image data.

Suggested Citation

  • F. Seitl & L. Petrich & J. Staněk & C. E. Krill & V. Schmidt & V. Beneš, 2021. "Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 669-693, June.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:2:d:10.1007_s11009-019-09757-x
    DOI: 10.1007/s11009-019-09757-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09757-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09757-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tscheschel, A. & Stoyan, D., 2006. "Statistical reconstruction of random point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 859-871, November.
    2. Dereudre, D. & Lavancier, F., 2011. "Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 498-519, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    2. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    3. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Tscheschel, André & Chiu, Sung Nok, 2008. "Quasi-plus sampling edge correction for spatial point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5287-5295, August.
    5. Löcherbach, Eva & Orlandi, Enza, 2011. "Neighborhood radius estimation for variable-neighborhood random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2151-2185, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:2:d:10.1007_s11009-019-09757-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.