IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i3d10.1007_s11009-017-9596-x.html
   My bibliography  Save this article

Sharp Bounds for Exponential Approximations of NWUE Distributions

Author

Listed:
  • Mark Brown

    (Columbia University)

  • Shuangning Li

    (Stanford University)

Abstract

Let F be an NWUE distribution with mean 1 and G be the stationary renewal distribution of F. We would expect G to converge in distribution to the unit exponential distribution as its mean goes to 1. In this paper, we derive sharp bounds for the Kolmogorov distance between G and the unit exponential distribution, as well as between G and an exponential distribution with the same mean as G. We apply the bounds to geometric convolutions and to first passage times.

Suggested Citation

  • Mark Brown & Shuangning Li, 2018. "Sharp Bounds for Exponential Approximations of NWUE Distributions," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 875-896, September.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9596-x
    DOI: 10.1007/s11009-017-9596-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9596-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9596-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldous, David J. & Brown, Mark, 1993. "Inequalities for rare events in time-reversible Markov chains II," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 15-25, January.
    2. Dickson, D. C. M., 2001. "Lundberg Approximations for Compound Distributions with Insurance Applications. By G. E. Willmot and X. S. Lin. (Springer, 2000)," British Actuarial Journal, Cambridge University Press, vol. 7(4), pages 690-691, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lesław Gajek & Marcin Rudź, 2020. "Finite-horizon general insolvency risk measures in a regime-switching Sparre Andersen model," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1507-1528, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Søren Asmussen & Pierre Fiorini & Lester Lipsky & Tomasz Rolski & Robert Sheahan, 2008. "Asymptotic Behavior of Total Times for Jobs That Must Start Over if a Failure Occurs," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 932-944, November.
    3. Sanguesa, C., 2006. "Approximations of ruin probabilities in mixed Poisson models with lattice claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 69-80, August.
    4. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    5. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    6. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    7. Psarrakos, Georgios, 2010. "On the DFR property of the compound geometric distribution with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 428-433, December.
    8. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    9. El Attar Abderrahim & El Hachloufi Mostafa & Guennoun Zine El Abidine, 2017. "An Inclusive Criterion For An Optimal Choice Of Reinsurance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-22, December.
    10. Baumgartner, Carolin & Gruber, Lutz F. & Czado, Claudia, 2015. "Bayesian total loss estimation using shared random effects," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 194-201.
    11. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    12. Diasparra, Maikol & Romera, Rosario, 2009. "Inequalities for the ruin probability in a controlled discrete-time risk process," DES - Working Papers. Statistics and Econometrics. WS ws093513, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Kim, So-Yeun & Willmot, Gordon E., 2016. "On the analysis of ruin-related quantities in the delayed renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 77-85.
    14. Wei, Xiao & Hu, Yijun, 2008. "Ruin probabilities for discrete time risk models with stochastic rates of interest," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 707-715, April.
    15. Franco Pellerey & Cristina Zucca, 2005. "Stochastic Bounds for the Sparre Andersen Process," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 225-247, June.
    16. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    17. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    18. Sotirios Losidis & Konstadinos Politis & Georgios Psarrakos, 2021. "Exact Results and Bounds for the Joint Tail and Moments of the Recurrence Times in a Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1489-1505, December.
    19. Diasparra, M. & Romera, R., 2010. "Inequalities for the ruin probability in a controlled discrete-time risk process," European Journal of Operational Research, Elsevier, vol. 204(3), pages 496-504, August.
    20. Drekic, Steve & Stafford, James E. & Willmot, Gordon E., 2004. "Symbolic calculation of the moments of the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 109-120, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9596-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.