IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i3d10.1007_s11009-017-9564-5.html
   My bibliography  Save this article

Markov Property in Discrete Schur-constant Models

Author

Listed:
  • Claude Lefèvre

    (Université Libre de Bruxelles
    Université de Lyon)

  • Stéphane Loisel

    (Université de Lyon)

  • Sergey Utev

    (University of Leicester)

Abstract

This paper is concerned with Schur-constant survival models for discrete random variables. Our main purpose is to prove that the associated partial sum process is a non-homogeneous Markov chain. This is shown in three different situations where the random variables considered take values in the sets 0, {0,1} or {0,…,m}, m ≥ 2. The property of Schur-constancy is also compared for these three cases.

Suggested Citation

  • Claude Lefèvre & Stéphane Loisel & Sergey Utev, 2018. "Markov Property in Discrete Schur-constant Models," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1003-1012, September.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9564-5
    DOI: 10.1007/s11009-017-9564-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9564-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9564-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claude Lefèvre & Stéphane Loisel & Sergey Utev, 2017. "On finite exchangeable sequences and their dependence," Post-Print hal-01995790, HAL.
    2. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    3. Chi, Yichun & Yang, Jingping & Qi, Yongcheng, 2009. "Decomposition of a Schur-constant model and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 398-408, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolev, Nikolai & Mulinacci, Sabrina, 2022. "New characterizations of bivariate discrete Schur-constant models," Statistics & Probability Letters, Elsevier, vol. 180(C).
    2. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.
    3. Castañer, Anna & Claramunt, M. Mercè & Lefèvre, Claude & Loisel, Stéphane, 2019. "Partially Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 47-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Casta~ner & M Merc`e Claramunt, 2017. "Equilibrium distributions and discrete Schur-constant models," Papers 1709.09955, arXiv.org.
    2. Ta, Bao Quoc & Van, Chung Pham, 2017. "Some properties of bivariate Schur-constant distributions," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 69-76.
    3. Castañer, Anna & Claramunt, M. Mercè & Lefèvre, Claude & Loisel, Stéphane, 2019. "Partially Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 47-58.
    4. Anna Castañer & M Mercè Claramunt, 2017. "Equilibrium distributions and discrete Schur-constant models," Working Papers hal-01593552, HAL.
    5. Anna Castañer & M. Mercè Claramunt, 2019. "Equilibrium Distributions and Discrete Schur-constant Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 449-459, June.
    6. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.
    7. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    8. Peyhardi, Jean & Fernique, Pierre & Durand, Jean-Baptiste, 2021. "Splitting models for multivariate count data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    9. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding basis risk using s-convex orders on Beta-unimodal distributions," Working Papers hal-02611208, HAL.
    10. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    11. Kolev, Nikolai & Mulinacci, Sabrina, 2022. "New characterizations of bivariate discrete Schur-constant models," Statistics & Probability Letters, Elsevier, vol. 180(C).
    12. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    13. Aoudia, Djilali Ait & Marchand, Éric & Perron, François, 2016. "Counts of Bernoulli success strings in a multivariate framework," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 1-10.
    14. Lefèvre Claude & Picard Philippe, 2023. "Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9564-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.