IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i4d10.1007_s11009-017-9568-1.html
   My bibliography  Save this article

Interpretation of the Evolution of the Homogeneous Markov System (or, equivalently, of the Embedded Markov Chain) as the Deformation of a Viscoelastic Medium. The 3-D Case

Author

Listed:
  • K. Loumponias

    (Aristotle University of Thessaloniki)

  • G. Tsaklidis

    (Aristotle University of Thessaloniki)

Abstract

Every attainable structure of a continuous time homogeneous Markov chain (HMC) with n states, or of a closed Markov system with an embedded HMC with n states, or more generally of a Markov system driven by an HMC, is considered as a point-particle of ℜ n . Then, the motion of the attainable structure corresponds to the motion of the respective point-particle in ℜ n . Under the assumption that “the motion of every particle at every time point is due to the interaction with its surroundings”, ℜ n (and equivalently the set of the accosiated attainable structures of the homogeneous Markov system (HMS), or alternatively of the underlying embedded HMC) becomes a continuum. Thus, the evolution of the set of the attainable structures corresponds to the motion of the continuum. In this paper it is shown that the evolution of a three-dimensional HMS (n = 3) or simply of an HMC, can be interpreted through the evolution of a two-dimensional isotropic viscoelastic medium.

Suggested Citation

  • K. Loumponias & G. Tsaklidis, 2017. "Interpretation of the Evolution of the Homogeneous Markov System (or, equivalently, of the Embedded Markov Chain) as the Deformation of a Viscoelastic Medium. The 3-D Case," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1227-1239, December.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9568-1
    DOI: 10.1007/s11009-017-9568-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9568-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9568-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9568-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.