IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i2d10.1007_s11009-016-9518-3.html
   My bibliography  Save this article

Optimal Linear Bernoulli Factories for Small Mean Problems

Author

Listed:
  • Mark Huber

    (Claremont McKenna College Claremont)

Abstract

Suppose a coin with unknown probability p of heads can be flipped as often as desired. A Bernoulli factory for a function f is an algorithm that uses flips of the coin together with auxiliary randomness to flip a single coin with probability f(p) of heads. Applications include perfect sampling from the stationary distribution of certain regenerative processes. When f is analytic, the problem can be reduced to a Bernoulli factory of the form f(p) = C p for constant C. Presented here is a new algorithm that for small values of C p, requires roughly only C coin flips. From information theoretic considerations, this is also conjectured to be (to first order) the minimum number of flips needed by any such algorithm. For large values of C p, the new algorithm can also be used to build a new Bernoulli factory that uses only 80 % of the expected coin flips of the older method. In addition, the new method also applies to the more general problem of a linear multivariate Bernoulli factory, where there are k coins, the kth coin has unknown probability p k of heads, and the goal is to simulate a coin flip with probability C 1 p 1+⋯ + C k p k of heads.

Suggested Citation

  • Mark Huber, 2017. "Optimal Linear Bernoulli Factories for Small Mean Problems," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 631-645, June.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9518-3
    DOI: 10.1007/s11009-016-9518-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9518-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9518-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9518-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.