IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v18y2016i1d10.1007_s11009-014-9402-y.html
   My bibliography  Save this article

A Law of the Iterated Logarithm for the Sojourn Time Process in Queues in Series

Author

Listed:
  • Saulius Minkevičius

    (Institute of Mathematics and Informatics of VU)

  • Vladimiras Dolgopolovas

    (Institute of Mathematics and Informatics of VU)

  • Leonidas L. Sakalauskas

    (Institute of Mathematics and Informatics of VU)

Abstract

The object of this research in the sphere of queueing theory is the law of the iterated logarithm under the conditions of heavy traffic in queues in series. In this paper, the laws of the iterated logarithm are proved for the values of important probabilistic characteristics of the queueing system, like the sojourn time of a customer, and maximum of the sojourn time of a customer. Also, we prove that the sojourn time of a customer can be approximated by some recurrent functional. We also provide the results of statistical simulations for various system parameters and distributions.

Suggested Citation

  • Saulius Minkevičius & Vladimiras Dolgopolovas & Leonidas L. Sakalauskas, 2016. "A Law of the Iterated Logarithm for the Sojourn Time Process in Queues in Series," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 37-57, March.
  • Handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9402-y
    DOI: 10.1007/s11009-014-9402-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-014-9402-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-014-9402-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin I. Reiman & Burton Simon & J. Stanford Willie, 1992. "Simterpolation: A Simulation based Interpolation Approximation for Queueing Systems," Operations Research, INFORMS, vol. 40(4), pages 706-723, August.
    2. Sakalauskas, L. L. & Minkevicius, S., 2000. "On the law of the iterated logarithm in open queueing networks," European Journal of Operational Research, Elsevier, vol. 120(3), pages 632-640, February.
    3. Martin I. Reiman & Lawrence M. Wein, 1999. "Heavy Traffic Analysis of Polling Systems in Tandem," Operations Research, INFORMS, vol. 47(4), pages 524-534, August.
    4. Cohen, J. W., 1973. "Asymptotic relations in queueing theory," Stochastic Processes and their Applications, Elsevier, vol. 1(2), pages 107-124, April.
    5. O. J. Boxma & Q. Deng, 2000. "Asymptotic behaviour of the tandem queueing system with identical service times at both queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 307-323, November.
    6. Martin I. Reiman, 1984. "Open Queueing Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 441-458, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Minkevičius & S. Steišūnas, 2006. "About the Sojourn Time Process in Multiphase Queueing Systems," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 293-302, June.
    2. Saulius Minkevičius & Edvinas Greičius, 2019. "Heavy Traffic Limits for the Extreme Waiting Time in Multi-phase Queueing Systems," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 109-124, March.
    3. Yongjiang Guo & Yunan Liu & Renhu Pei, 2018. "Functional law of the iterated logarithm for multi-server queues with batch arrivals and customer feedback," Annals of Operations Research, Springer, vol. 264(1), pages 157-191, May.
    4. Minkevicius, Saulius & Steisunas, Stasys, 2003. "A law of the iterated logarithm for global values of waiting time in multiphase queues," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 359-371, February.
    5. David M. Markowitz & Lawrence M. Wein, 2001. "Heavy Traffic Analysis of Dynamic Cyclic Policies: A Unified Treatment of the Single Machine Scheduling Problem," Operations Research, INFORMS, vol. 49(2), pages 246-270, April.
    6. Saulius MinkeviÄ ius, 2020. "On the law of the iterated logarithm in hybrid multiphase queueing systems," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 30(4), pages 57-64.
    7. Edvinas Greičius & Saulius Minkevičius, 2017. "Diffusion limits for the queue length of jobs in multi-server open queueing networks," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 71-84.
    8. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    9. Josh Reed & Yair Shaki, 2015. "A Fair Policy for the G / GI / N Queue with Multiple Server Pools," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 558-595, March.
    10. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    11. Mor Armony & Constantinos Maglaras, 2004. "On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design," Operations Research, INFORMS, vol. 52(2), pages 271-292, April.
    12. Biswas, Anup & Budhiraja, Amarjit, 2011. "Exit time and invariant measure asymptotics for small noise constrained diffusions," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 899-924.
    13. Avi Mandelbaum & Kavita Ramanan, 2010. "Directional Derivatives of Oblique Reflection Maps," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 527-558, August.
    14. Yamada, Keigo, 1999. "Two limit theorems for queueing systems around the convergence of stochastic integrals with respect to renewal processes," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 103-128, March.
    15. Ward Whitt & Wei You, 2020. "Heavy-traffic limits for stationary network flows," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 53-68, June.
    16. Otis B. Jennings, 2008. "Heavy-Traffic Limits of Queueing Networks with Polling Stations: Brownian Motion in a Wedge," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 12-35, February.
    17. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    18. H. Christian Gromoll & Bryce Terwilliger & Bert Zwart, 2018. "Heavy traffic limit for a tandem queue with identical service times," Queueing Systems: Theory and Applications, Springer, vol. 89(3), pages 213-241, August.
    19. Yongjiang Guo & Xiyang Hou & Yunan Liu, 2021. "A functional law of the iterated logarithm for multi-class queues with batch arrivals," Annals of Operations Research, Springer, vol. 300(1), pages 51-77, May.
    20. Gromoll, H. Christian & Terwilliger, Bryce & Zwart, Bert, 2020. "Heavy traffic limit for the workload plateau process in a tandem queue with identical service times," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1435-1460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9402-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.