IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i1d10.1007_s11009-013-9329-8.html
   My bibliography  Save this article

Maximum-Likelihood Asymptotic Inference for Autoregressive Hilbertian Processes

Author

Listed:
  • M. D. Ruiz-Medina

    (Faculty of Sciences, University of Granada)

  • R. M. Espejo

    (University of Granada)

Abstract

The autoregressive Hilbertian process framework has been introduced in Bosq (2000). This book provides the nonparametric estimation of the autocorrelation and covariance operators of the autoregressive Hilbertian processes. The asymptotic properties of these estimators are also provided. The maximum likelihood approach still remains unexplored. This paper obtains the asymptotic distribution of the maximum likelihood (ML) estimators of the auto-covariance operator of the Hilbert-valued innovation process, and of the autocorrelation operator of a Gaussian autoregressive Hilbertian process of order one. A real data example is analyzed in the financial context for illustration of the performance of the projection maximum likelihood estimation methodology in the context of missing data.

Suggested Citation

  • M. D. Ruiz-Medina & R. M. Espejo, 2015. "Maximum-Likelihood Asymptotic Inference for Autoregressive Hilbertian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 207-222, March.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:1:d:10.1007_s11009-013-9329-8
    DOI: 10.1007/s11009-013-9329-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9329-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9329-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Medina, M.D., 2011. "Spatial autoregressive and moving average Hilbertian processes," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 292-305, February.
    2. Serge Guillas & Ming-Jun Lai, 2010. "Bivariate splines for spatial functional regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 477-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    2. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    3. Arnab Bhattacharjee & Eduardo Castro & Taps Maiti & João Marques, 2014. "Endogenous spatial structure and delineation of submarkets: A new framework with application to housing markets," SEEC Discussion Papers 1403, Spatial Economics and Econometrics Centre, Heriot Watt University.
    4. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    5. Ruiz-Medina, M.D., 2011. "Spatial autoregressive and moving average Hilbertian processes," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 292-305, February.
    6. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    7. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    8. M. D. Ruiz-Medina & V. V. Anh & R. M. Espejo & J. M. Angulo & M. P. Frías, 2015. "Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 888-911, December.
    9. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    10. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    11. Ramón Giraldo & William Caballero & Jesús Camacho-Tamayo, 2018. "Mantel test for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 21-39, January.
    12. María P. Frías & Antoni Torres-Signes & María D. Ruiz-Medina & Jorge Mateu, 2022. "Spatial Cox processes in an infinite-dimensional framework," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 175-203, March.
    13. Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
    14. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:1:d:10.1007_s11009-013-9329-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.