IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i4d10.1007_s11009-013-9326-y.html
   My bibliography  Save this article

Scaling Analysis of Delayed Rejection MCMC Methods

Author

Listed:
  • Mylène Bédard

    (Université de Montréal)

  • Randal Douc

    (SAMOVAR, CNRS UMR 5157 - Institut Télécom/Télécom SudParis)

  • Eric Moulines

    (LTCI, CNRS UMR 8151 - Institut Télécom /Télécom ParisTech)

Abstract

In this paper, we study the asymptotic efficiency of the delayed rejection strategy. In particular, the efficiency of the delayed rejection Metropolis–Hastings algorithm is compared to that of the regular Metropolis algorithm. To allow for a fair comparison, the study is carried under optimal mixing conditions for each of these algorithms. After introducing optimal scaling results for the delayed rejection (DR) algorithm, we outline the fact that the second proposal after the first rejection is discarded, with a probability tending to 1 as the dimension of the target density increases. To overcome this drawback, a modification of the delayed rejection algorithm is proposed, in which the direction of the different proposals is fixed once for all, and the Metropolis–Hastings accept-reject mechanism is used to select a proper scaling along the search direction. It is shown that this strategy significantly outperforms the original DR and Metropolis algorithms, especially when the dimension becomes large. We include numerical studies to validate these conclusions.

Suggested Citation

  • Mylène Bédard & Randal Douc & Eric Moulines, 2014. "Scaling Analysis of Delayed Rejection MCMC Methods," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 811-838, December.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9326-y
    DOI: 10.1007/s11009-013-9326-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9326-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9326-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davide Raggi, 2005. "Adaptive MCMC methods for inference on affine stochastic volatility models with jumps," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 235-250, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel F. Jonker & Arthur E. Attema & Bas Donkers & Elly A. Stolk & Matthijs M. Versteegh, 2017. "Are Health State Valuations from the General Public Biased? A Test of Health State Reference Dependency Using Self‐assessed Health and an Efficient Discrete Choice Experiment," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1534-1547, December.
    2. Bédard, Mylène, 2017. "Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 231-246.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    2. Ping Chen & Jinde Wang, 2010. "Application in stochastic volatility models of nonlinear regression with stochastic design," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 142-156, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9326-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.