IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i4d10.1007_s11009-010-9199-2.html
   My bibliography  Save this article

A New Method for Finding the Characteristic Roots of E n /E m /1 Queues

Author

Listed:
  • Winfried K. Grassmann

    (University of Saskatchewan)

Abstract

In 1953, Smith (Proc Camb Philos Soc 49:449–461, 1953), and, following him, Syski (1960) suggested a method to find the waiting time distribution for one server queues with Erlang-n arrivals and Erlang-m service times by using characteristic roots. Syski shows that these roots can be determined from a very simple equation, but an equation of degree n + m. Syski also shows that almost all of the characteristic roots are complex. In this paper, we derive a set of equations, one for each complex root, which can be solved by Newton’s method using real arithmetic. This method simplifies the programming logic because it avoids deflation and the subsequent polishing of the roots. Using the waiting time distribution, Syski then derived the distribution of the number in the system after a departure. E n /E m /1 queues can also formulated as quasi birth-death (QBD) processes, and in this case, the characteristic roots discussed by Syski are closely related to the eigenvalues of the QBD process. The QBD process provides information about the number in system at random times, but they are much more difficult to formulate and solve.

Suggested Citation

  • Winfried K. Grassmann, 2011. "A New Method for Finding the Characteristic Roots of E n /E m /1 Queues," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 873-886, December.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9199-2
    DOI: 10.1007/s11009-010-9199-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9199-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9199-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyuan Liu & Brian Fralix, 2019. "On Lattice Path Counting and the Random Product Representation, with Applications to the Er/M/1 Queue and the M/Er/1 Queue," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1119-1149, December.
    2. B. H. Margolius, 2023. "The periodic steady-state solution for queues with Erlang arrivals and service and time-varying periodic transition rates," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 45-94, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9199-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.