IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v11y2009i2d10.1007_s11009-008-9085-3.html
   My bibliography  Save this article

Robust Optimal Portfolio Choice Under Markovian Regime-switching Model

Author

Listed:
  • Robert J. Elliott

    (University of Calgary
    University of Adelaide)

  • Tak Kuen Siu

    (Curtin University of Technology)

Abstract

We investigate an optimal portfolio selection problem in a continuous-time Markov-modulated financial market when an economic agent faces model uncertainty and seeks a robust optimal portfolio strategy. The key market parameters are assumed to be modulated by a continuous-time, finite-state Markov chain whose states are interpreted as different states of an economy. The goal of the agent is to maximize the minimal expected utility of terminal wealth over a family of probability measures in a finite time horizon. The problem is then formulated as a Markovian regime-switching version of a two-player, zero-sum stochastic differential game between the agent and the market. We solve the problem by the Hamilton-Jacobi-Bellman approach.

Suggested Citation

  • Robert J. Elliott & Tak Kuen Siu, 2009. "Robust Optimal Portfolio Choice Under Markovian Regime-switching Model," Methodology and Computing in Applied Probability, Springer, vol. 11(2), pages 145-157, June.
  • Handle: RePEc:spr:metcap:v:11:y:2009:i:2:d:10.1007_s11009-008-9085-3
    DOI: 10.1007/s11009-008-9085-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-008-9085-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-008-9085-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Permanent Income and Pricing," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 3, pages 33-81, World Scientific Publishing Co. Pte. Ltd..
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    5. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    6. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    7. X. Guo, 2001. "Information and option pricings," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 38-44.
    8. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    9. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. Bong‐Gyu Jang & Hyeng Keun Koo & Hong Liu & Mark Loewenstein, 2007. "Liquidity Premia and Transaction Costs," Journal of Finance, American Finance Association, vol. 62(5), pages 2329-2366, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Bo & Huafu Liao & Yongjin Wang, 2018. "Optimal Credit Investment and Risk Control for an Insurer with Regime-Switching," Papers 1807.05513, arXiv.org.
    2. Eduard Baitinger & Christian Fieberg & Thorsten Poddig & Armin Varmaz, 2015. "Liquidity-driven approach to dynamic asset allocation: evidence from the German stock market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(4), pages 365-379, November.
    3. Dong, Yinghui & Yuen, Kam C. & Wu, Chongfeng, 2014. "Unilateral counterparty risk valuation of CDS using a regime-switching intensity model," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 25-35.
    4. Jin-Ray Lu & Chih-Ming Chan, 2014. "Optimal portfolio choice of gold assets in the differential market and differential game structures," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 309-325, February.
    5. Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
    6. Bo, Lijun & Tang, Dan & Wang, Yongjin, 2017. "Optimal investment of variance-swaps in jump-diffusion market with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 175-197.
    7. Xiang Lin & Chunhong Zhang & Tak Siu, 2012. "Stochastic differential portfolio games for an insurer in a jump-diffusion risk process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(1), pages 83-100, February.
    8. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    9. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    10. Wei Wang & Qianyan Li & Quan Li & Song Xu, 2023. "Robust Optimal Investment Strategies with Exchange Rate Risk and Default Risk," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    11. Chen, Ping & Yam, S.C.P., 2013. "Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 871-883.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    2. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    3. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    4. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    5. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.
    6. Kerem Ugurlu, 2019. "Robust Utility Maximization with Drift and Volatility Uncertainty," Papers 1909.05335, arXiv.org.
    7. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    8. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    9. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    10. Sigrid Kallblad, 2013. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Papers 1311.7419, arXiv.org.
    11. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    12. Len Patrick Dominic M. Garces & Yang Shen, 2024. "Robust optimal investment and consumption strategies with portfolio constraints and stochastic environment," Papers 2407.02831, arXiv.org.
    13. Jang, Bong-Gyu & Lee, Seungkyu & Lim, Byung Hwa, 2016. "Robust consumption and portfolio rules with time-varying model confidence," Finance Research Letters, Elsevier, vol. 18(C), pages 342-352.
    14. Kerem Ugurlu, 2018. "Portfolio Optimization with Nondominated Priors and Unbounded Parameters," Papers 1807.05773, arXiv.org.
    15. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    16. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    17. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    18. Alexander Zimper, 2011. "Do Bayesians Learn Their Way Out of Ambiguity?," Decision Analysis, INFORMS, vol. 8(4), pages 269-285, December.
    19. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    20. Jianjun Miao & Alejandro Rivera, 2016. "Robust Contracts in Continuous Time," Econometrica, Econometric Society, vol. 84, pages 1405-1440, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:2:d:10.1007_s11009-008-9085-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.