IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v88y2018i1d10.1007_s00186-017-0627-8.html
   My bibliography  Save this article

Delay analysis of a two-class batch-service queue with class-dependent variable server capacity

Author

Listed:
  • Jens Baetens

    (Ghent University)

  • Bart Steyaert

    (Ghent University)

  • Dieter Claeys

    (Ghent University
    Ghent University)

  • Herwig Bruneel

    (Ghent University)

Abstract

In this paper, we analyse the delay of a random customer in a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common single-server first-come-first-served queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the length of a sequence of same-class customers. This type of batch server can be found in telecommunications systems and production environments. We first determine the steady state partial probability generating function of the queue occupancy at customer arrival epochs. Using a spectral decomposition technique, we obtain the steady state probability generating function of the delay of a random customer. We also show that the distribution of the delay of a random customer corresponds to a phase-type distribution. Finally, some numerical examples are given that provide further insight in the impact of asymmetry and variance in the arrival process on the number of customers in the system and the delay of a random customer.

Suggested Citation

  • Jens Baetens & Bart Steyaert & Dieter Claeys & Herwig Bruneel, 2018. "Delay analysis of a two-class batch-service queue with class-dependent variable server capacity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 37-57, August.
  • Handle: RePEc:spr:mathme:v:88:y:2018:i:1:d:10.1007_s00186-017-0627-8
    DOI: 10.1007/s00186-017-0627-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-017-0627-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-017-0627-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren B. Powell & Pierre Humblet, 1986. "The Bulk Service Queue with a General Control Strategy: Theoretical Analysis and a New Computational Procedure," Operations Research, INFORMS, vol. 34(2), pages 267-275, April.
    2. Yi, Xeung W. & Kim, Nam K. & Yoon, Bong K. & Chae, Kyung C., 2007. "Analysis of the queue-length distribution for the discrete-time batch-service Geo/Ga,Y/1/K queue," European Journal of Operational Research, Elsevier, vol. 181(2), pages 787-792, September.
    3. Gabriel R. Bitran & D. Tirupati, 1989. "Approximations for Product Departures from a Single-Server Station with Batch Processing in Multi-Product Queues," Management Science, INFORMS, vol. 35(7), pages 851-878, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Baetens & Bart Steyaert & Dieter Claeys & Herwig Bruneel, 2020. "System occupancy in a multiclass batch-service queueing system with limited variable service capacity," Annals of Operations Research, Springer, vol. 293(1), pages 3-26, October.
    2. Srinivas R. Chakravarthy & Shruti & Alexander Rumyantsev, 2021. "Analysis of a Queueing Model with Batch Markovian Arrival Process and General Distribution for Group Clearance," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1551-1579, December.
    3. Fabian Schéele & Darek M. Haftor & Natallia Pashkevich, 2022. "Predicting delays in service operations," Service Business, Springer;Pan-Pacific Business Association, vol. 16(2), pages 211-226, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dieter Claeys & Koenraad Laevens & Joris Walraevens & Herwig Bruneel, 2010. "Complete characterisation of the customer delay in a queueing system with batch arrivals and batch service," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 1-23, August.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Sergei Dudin & Olga Dudina, 2023. "Analysis of a Multi-Server Queue with Group Service and Service Time Dependent on the Size of a Group as a Model of a Delivery System," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    4. Noah Gans & Garrett van Ryzin, 1999. "Dynamic Vehicle Dispatching: Optimal Heavy Traffic Performance and Practical Insights," Operations Research, INFORMS, vol. 47(5), pages 675-692, October.
    5. Justus Schwarz & Judith Stoll née Matzka & Eda Özden, 2015. "A general model for batch building processes under the timeout and capacity rules," Annals of Operations Research, Springer, vol. 231(1), pages 5-31, August.
    6. Papadaki, Katerina P. & Powell, Warren B., 2002. "Exploiting structure in adaptive dynamic programming algorithms for a stochastic batch service problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 108-127, October.
    7. Claeys, Dieter & Walraevens, Joris & Laevens, Koenraad & Bruneel, Herwig, 2010. "A queueing model for general group screening policies and dynamic item arrivals," European Journal of Operational Research, Elsevier, vol. 207(2), pages 827-835, December.
    8. Yi, Xeung W. & Kim, Nam K. & Yoon, Bong K. & Chae, Kyung C., 2007. "Analysis of the queue-length distribution for the discrete-time batch-service Geo/Ga,Y/1/K queue," European Journal of Operational Research, Elsevier, vol. 181(2), pages 787-792, September.
    9. Xu, Jianjun & Serrano, Alejandro & Lin, Bing, 2017. "Optimal production and rationing policy of two-stage tandem production system," International Journal of Production Economics, Elsevier, vol. 185(C), pages 100-112.
    10. Mohan Chaudhry & Veena Goswami, 2022. "The Geo / G a , Y /1/ N Queue Revisited," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    11. Katerina P. Papadaki & Warren B. Powell, 2003. "An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 742-769, October.
    12. Apoorv Saxena & Dieter Claeys & Bo Zhang & Joris Walraevens, 2020. "Cloud data storage: a queueing model with thresholds," Annals of Operations Research, Springer, vol. 293(1), pages 295-315, October.
    13. M. A. A. Boon & A. J. E. M. Janssen & J. S. H. Leeuwaarden & R. W. Timmerman, 2019. "Pollaczek contour integrals for the fixed-cycle traffic-light queue," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 89-111, February.
    14. K. Sikdar & S. K. Samanta, 2016. "Analysis of a finite buffer variable batch service queue with batch Markovian arrival process and server’s vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 553-583, September.
    15. Nam K. Kim & Kyung C. Chae & Mohan L. Chaudhry, 2004. "An Invariance Relation and a Unified Method to Derive Stationary Queue-Length Distributions," Operations Research, INFORMS, vol. 52(5), pages 756-764, October.
    16. Lotfi Tadj & Gautam Choudhury, 2005. "Optimal design and control of queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 359-412, December.
    17. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    18. Ruth Sagron & Uri Yechiali, 2024. "Inter-Departure Time Correlations in PH / G /1 Queues," Mathematics, MDPI, vol. 12(9), pages 1-23, April.
    19. Gopinath Panda & Veena Goswami, 2023. "Analysis of a Discrete-time Queue with Modified Batch Service Policy and Batch-size-dependent Service," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-18, March.
    20. Sarang Deo & Milind Sohoni, 2015. "Optimal Decentralization of Early Infant Diagnosis of HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 191-207, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:88:y:2018:i:1:d:10.1007_s00186-017-0627-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.