IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v86y2017i3d10.1007_s00186-017-0605-1.html
   My bibliography  Save this article

Second-order asymptotic analysis for noncoercive convex optimization

Author

Listed:
  • F. Lara

    (Universidad de Tarapacá)

Abstract

We use second-order asymptotic analysis to deal with the minimization problem of a noncoercive convex function in a reflexive Banach space. To that end, we first introduce the definition of a second-order asymptotic cone, and its respective function, based on previous results for the finite dimensional case. We provide necessary and sufficient conditions for the existence of solutions for noncoercive convex minimization problems. Examples for which our assumptions are easier to verify than other well-known results are also provided.

Suggested Citation

  • F. Lara, 2017. "Second-order asymptotic analysis for noncoercive convex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 469-483, December.
  • Handle: RePEc:spr:mathme:v:86:y:2017:i:3:d:10.1007_s00186-017-0605-1
    DOI: 10.1007/s00186-017-0605-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-017-0605-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-017-0605-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred Auslender, 1996. "Noncoercive Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 21(4), pages 769-782, November.
    2. S. Deng, 2010. "Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 29-42, January.
    3. F. Flores-Bazán & N. Hadjisavvas & F. Lara & I. Montenegro, 2016. "First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 372-393, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    2. John Cotrina & Fernanda Raupp & Wilfredo Sosa, 2015. "Semi-continuous quadratic optimization: existence conditions and duality scheme," Journal of Global Optimization, Springer, vol. 63(2), pages 281-295, October.
    3. A. E. Ozdaglar & P. Tseng, 2006. "Existence of Global Minima for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 523-546, March.
    4. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    5. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    6. C. Gutiérrez & L. Huerga & E. Köbis & C. Tammer, 2021. "A scalarization scheme for binary relations with applications to set-valued and robust optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 233-256, January.
    7. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    8. M. Chicco & F. Mignanego & L. Pusillo & S. Tijs, 2011. "Vector Optimization Problems via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 516-529, September.
    9. Wu Li & Ivan Singer, 1998. "Global Error Bounds for Convex Multifunctions and Applications," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 443-462, May.
    10. Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
    11. Alfredo Iusem & Felipe Lara, 2019. "Optimality Conditions for Vector Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 187-206, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:86:y:2017:i:3:d:10.1007_s00186-017-0605-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.