IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v70y2009i1p149-169.html
   My bibliography  Save this article

A feedback fluid queue with two congestion control thresholds

Author

Listed:
  • R. Malhotra
  • M. Mandjes
  • W. Scheinhardt
  • J. Berg

Abstract

Feedback fluid queues play an important role in modeling congestion control mechanisms for packet networks. In this paper we present and analyze a fluid queue with a feedback-based traffic rate adaptation scheme which uses two thresholds. The higher threshold B 1 is used to signal the beginning of congestion while the lower threshold B 2 signals the end of congestion. These two parameters together allow to make the trade-off between maximizing throughput performance and minimizing delay. The difference between the two thresholds helps to control the amount of feedback signals sent to the traffic source. In our model the input source can behave like either of two Markov fluid processes. The first applies as long as the upper threshold B 1 has not been hit from below. As soon as that happens, the traffic source adapts and switches to the second process, until B 2 (smaller than B 1 ) is hit from above. We analyze the model by setting up the Kolmogorov forward equations, then solving the corresponding balance equations using a spectral expansion, and finally identifying sufficient constraints to solve for the unknowns in the solution. In particular, our analysis yields expressions for the stationary distribution of the buffer occupancy, the buffer delay distribution, and the throughput. Copyright The Author(s) 2009

Suggested Citation

  • R. Malhotra & M. Mandjes & W. Scheinhardt & J. Berg, 2009. "A feedback fluid queue with two congestion control thresholds," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 149-169, August.
  • Handle: RePEc:spr:mathme:v:70:y:2009:i:1:p:149-169
    DOI: 10.1007/s00186-008-0235-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0235-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0235-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O’Reilly, Małgorzata M., 2014. "Multi-stage stochastic fluid models for congestion control," European Journal of Operational Research, Elsevier, vol. 238(2), pages 514-526.
    2. D’Auria, Bernardo & Adan, Ivo J.B.F. & Bekker, René & Kulkarni, Vidyadhar, 2022. "An M/M/c queue with queueing-time dependent service rates," European Journal of Operational Research, Elsevier, vol. 299(2), pages 566-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:70:y:2009:i:1:p:149-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.