IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v64y2006i1p125-144.html
   My bibliography  Save this article

Semi-Markov modulated Poisson process: probabilistic and statistical analysis

Author

Listed:
  • S. Özekici
  • R. Soyer

Abstract

We consider a Poisson process that is modulated in such a way that the arrival rate at any time depends on the state of a semi-Markov process. This presents an interesting generalization of Poisson processes with important implications in real life applications. Our analysis concentrates on the transient as well as the long term behaviour of the arrival count and the arrival time processes. We discuss probabilistic as well as statistical issues related to various quantities of interest. Copyright Springer-Verlag 2006

Suggested Citation

  • S. Özekici & R. Soyer, 2006. "Semi-Markov modulated Poisson process: probabilistic and statistical analysis," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 125-144, August.
  • Handle: RePEc:spr:mathme:v:64:y:2006:i:1:p:125-144
    DOI: 10.1007/s00186-006-0067-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-006-0067-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-006-0067-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdem, Asli Sencer & Ozekici, Suleyman, 2002. "Inventory models with random yield in a random environment," International Journal of Production Economics, Elsevier, vol. 78(3), pages 239-253, August.
    2. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    3. Ozekici, S. & Soyer, R., 2003. "Reliability of software with an operational profile," European Journal of Operational Research, Elsevier, vol. 149(2), pages 459-474, September.
    4. S. Özekici & R. Soyer, 2003. "Bayesian analysis of Markov Modulated Bernoulli Processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 125-140, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cobo, Pepa, 2017. "Findings about the two-state BMMPP for modeling point processes in reliability and queueing systems," DES - Working Papers. Statistics and Econometrics. WS 24622, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Ahmadi, Reza & Newby, Martin, 2011. "Maintenance scheduling of a manufacturing system subject to deterioration," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1411-1420.
    3. Ahmadi, Reza & Fouladirad, Mitra, 2017. "Maintenance planning for a deteriorating production process," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 108-118.
    4. Landon, Joshua & Özekici, Süleyman & Soyer, Refik, 2013. "A Markov modulated Poisson model for software reliability," European Journal of Operational Research, Elsevier, vol. 229(2), pages 404-410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    2. Mohebbi, Esmail, 2006. "A production-inventory model with randomly changing environmental conditions," European Journal of Operational Research, Elsevier, vol. 174(1), pages 539-552, October.
    3. Arifoglu, Kenan & Özekici, Süleyman, 2011. "Inventory management with random supply and imperfect information: A hidden Markov model," International Journal of Production Economics, Elsevier, vol. 134(1), pages 123-137, November.
    4. Arifoglu, Kenan & Özekici, Süleyman, 2010. "Optimal policies for inventory systems with finite capacity and partially observed Markov-modulated demand and supply processes," European Journal of Operational Research, Elsevier, vol. 204(3), pages 421-438, August.
    5. Yan, Xiaoming & Zhang, Minghui & Liu, Ke, 2010. "A note on coordination in decentralized assembly systems with uncertain component yields," European Journal of Operational Research, Elsevier, vol. 205(2), pages 469-478, September.
    6. Fernando Alvarez & Francesco Lippi & Roberto Robatto, 2019. "Cost of Inflation in Inventory Theoretical Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 206-226, April.
    7. Axsäter, Sven, 2011. "Batch quantities when forecasts are improving," International Journal of Production Economics, Elsevier, vol. 133(1), pages 212-215, September.
    8. Qi‐Ming He & James H. Bookbinder & Qishu Cai, 2020. "Optimal policies for stochastic clearing systems with time‐dependent delay penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 487-502, October.
    9. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    10. Kutzner, Sarah C. & Kiesmüller, Gudrun P., 2013. "Optimal control of an inventory-production system with state-dependent random yield," European Journal of Operational Research, Elsevier, vol. 227(3), pages 444-452.
    11. Qing Li & Peiwen Yu, 2012. "Technical Note---On the Quasiconcavity of Lost-Sales Inventory Models with Fixed Costs," Operations Research, INFORMS, vol. 60(2), pages 286-291, April.
    12. Van-Anh Truong, 2014. "Approximation Algorithm for the Stochastic Multiperiod Inventory Problem via a Look-Ahead Optimization Approach," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1039-1056, November.
    13. Gullu, Refik, 1998. "Base stock policies for production/inventory problems with uncertain capacity levels," European Journal of Operational Research, Elsevier, vol. 105(1), pages 43-51, February.
    14. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    15. Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.
    16. Bendre, Abhijit Bhagwan & Nielsen, Lars Relund, 2013. "Inventory control in a lost-sales setting with information about supply lead times," International Journal of Production Economics, Elsevier, vol. 142(2), pages 324-331.
    17. Paul Zipkin, 2008. "On the Structure of Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 56(4), pages 937-944, August.
    18. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    19. Hekimoğlu, Mustafa & van der Laan, Ervin & Dekker, Rommert, 2018. "Markov-modulated analysis of a spare parts system with random lead times and disruption risks," European Journal of Operational Research, Elsevier, vol. 269(3), pages 909-922.
    20. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:64:y:2006:i:1:p:125-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.