IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v60y2004i3p349-367.html
   My bibliography  Save this article

On semidefinite programming relaxations for the satisfiability problem

Author

Listed:
  • Miguel F. Anjos

Abstract

This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in conjunctive normal form. We propose a new SDP relaxation for 3-SAT and prove some of its theoretical properties. We also show that, together with two SDP relaxations previously proposed in the literature, the new relaxation completes a trio of linearly sized relaxations with increasing rank-based guarantees for proving satisfiability. A comparison of the relative practical performances of the SDP relaxations shows that, among these three relaxations, the new relaxation provides the best tradeoff between theoretical strength and practical performance within an enumerative algorithm. Copyright Springer-Verlag 2004

Suggested Citation

  • Miguel F. Anjos, 2004. "On semidefinite programming relaxations for the satisfiability problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(3), pages 349-367, December.
  • Handle: RePEc:spr:mathme:v:60:y:2004:i:3:p:349-367
    DOI: 10.1007/s001860400377
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860400377
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860400377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Xia & Ying-Wei Han, 2014. "Partial Lagrangian relaxation for the unbalanced orthogonal Procrustes problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 225-237, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:60:y:2004:i:3:p:349-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.