IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v48y1998i3p387-417.html
   My bibliography  Save this article

Constrained Markov decision processes with total cost criteria: Lagrangian approach and dual linear program

Author

Listed:
  • Eitan Altman

Abstract

The aim of this paper is to investigate the Lagrangian approach and a related Linear Programming (LP) that appear in constrained Markov decision processes (CMDPs) with a countable state space and total expected cost criteria (of which the expected discounted cost is a special case). We consider transient MDPs and MDPs with uniform Lyapunov functions, and obtain for these an LP which is the dual of another one that has been shown to provide the optimal values and stationary policies [3, 4]. We show that there is no duality gap between these LPs under appropriate conditions. In obtaining the Linear Program for the general transient case, we establish, in particular, a calculation approach for the value function of the CMDP based on finite state approximation. Unlike previous approaches for state approximations for CMDPs (most of which were derived for the contracting framework), we do not need here any Slater type condition. We finally present another type of LP that allows the computation of optimal mixed stationary-deterministic policies. Copyright Springer-Verlag Berlin Heidelberg 1998

Suggested Citation

  • Eitan Altman, 1998. "Constrained Markov decision processes with total cost criteria: Lagrangian approach and dual linear program," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(3), pages 387-417, December.
  • Handle: RePEc:spr:mathme:v:48:y:1998:i:3:p:387-417
    DOI: 10.1007/s001860050035
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860050035
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860050035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elinor Ginzburg-Ganz & Itay Segev & Alexander Balabanov & Elior Segev & Sivan Kaully Naveh & Ram Machlev & Juri Belikov & Liran Katzir & Sarah Keren & Yoash Levron, 2024. "Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 17(21), pages 1-54, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:48:y:1998:i:3:p:387-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.