IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i7d10.1007_s11027-022-10026-5.html
   My bibliography  Save this article

Ruminant contribution to enteric methane emissions and possible mitigation strategies in the Southern Africa Development Community region

Author

Listed:
  • Mompoloki Seketeme

    (Botswana University of Agriculture & Natural Resources)

  • Othusitse R. Madibela

    (Botswana University of Agriculture & Natural Resources)

  • Thabo Khumoetsile

    (Botswana University of Agriculture & Natural Resources)

  • Innocent Rugoho

    (Lely Australia Pty Ltd, Truganina
    YourFarmGenetics Pvt Ltd, Nharira View)

Abstract

The Southern Africa Development Community (SADC) region is not a major emitter of greenhouse gases (GHG). However, Sub-Saharan Africa is considered a potential future hotspot for GHG emissions because of its large livestock population dispersed across large arid lands, coupled with the inherent low digestible feeds in the region and consequently low productivity of livestock. In SADC, climate change is predicted to increase temperatures further reducing agricultural productivity. Therefore, there is incentive to reduce agriculture’s contribution to GHG emissions in the SADC region. Ruminant production, a mainstay of rural economy, is predicted to decrease because of diminished grazing due to reduced rainfall and feed quality. However, ruminants’ enteric methane (CH4) production contributes to GHG emissions. This review explores strategies for the SADC region to reduce CH4 by ruminants. As methanogenesis is an outcome of microbial activity, potential opportunities include selecting animals with inherent low CH4 production; altering ruminal microbial populations to those that do not yield CH4; enhancing feed digestibility by feeding additives which improve diet quality and alter the ruminal microbiome and using specific forages such as seaweed or duckweed that contain plant secondary metabolites that may decrease methanogen populations or methanogenesis. These strategies are considered in terms of their potential magnitude of CH4 mitigation, the practicality for their implementation in the SADC region and their suitability to be included in the grazing-based livestock industries in the SADC region.

Suggested Citation

  • Mompoloki Seketeme & Othusitse R. Madibela & Thabo Khumoetsile & Innocent Rugoho, 2022. "Ruminant contribution to enteric methane emissions and possible mitigation strategies in the Southern Africa Development Community region," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-26, October.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10026-5
    DOI: 10.1007/s11027-022-10026-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10026-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10026-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Spatiotemporal Patterns and Influencing Factors of Agriculture Methane Emissions in China," Agriculture, MDPI, vol. 12(10), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Fuxing & Wang, Yanping & Zhu, Haoyong & Zhang, Chuangye & Sun, Haowei & Fang, Zhuling & Yang, Jing & Zhang, Linsen & Mu, Yan & Man, Yu Bon & Wu, Fuyong, 2023. "Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China," Agricultural Systems, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10026-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.