IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i3d10.1007_s11027-018-9819-7.html
   My bibliography  Save this article

GHG emission projection and mitigation potential for ceramic tableware industry in Thailand

Author

Listed:
  • Kannaphat Chuenwong

    (King Mongkut’s University of Technology Thonburi
    Center of Excellence on Energy Technology and Environment)

  • Boonrod Sajjakulnukit

    (Center of Excellence on Energy Technology and Environment
    King Mongkut’s University of Technology Thonburi)

  • Siriluk Chiarakorn

    (King Mongkut’s University of Technology Thonburi)

Abstract

The greenhouse gas (GHG) emissions of the global ceramic production is estimated at more than 400 Mt CO2/year, which have increased steadily from economic growth. Among ceramic industries, ceramic tableware industry (CTI) is a highly energy-intensive and high GHG emissions industry. Thailand was the fourth highest ranking ceramic tableware exporting country in the world. However, information on GHG emission from this industry was limited. This research aimed to investigate the carbon dioxide(CO2) intensity of CTI in Thailand and the annual projections of GHG emission during 2017–2050 with different GDP growths. Then, the energy saving potentials and GHG mitigation measures with their GHG abatement cost for small and large-scale CTI were proposed. The results indicated that the average CO2 intensity of Thailand CTI was 1.75 kg CO2e/kg of product. The projections for GHG emissions of ceramic tableware production with gross domestic production (GDP) growth rates of 1.5, 3.5 (BAU), and 5.5%, reached their maximum emissions at 220,500 t CO2 in 2029, 2022, and 2020, respectively. Under a BAU scenario, ceramic tableware production in 2022 would emit GHG at a rate approximately 1.37 times greater compared to the emissions in 2016. The maximum GHG reduction (100% implementation) was 48,902 t CO2e, accounting for 22% of GHG emissions in 2030. The average mitigation cost was 6.64 USD/t CO2e reduction. This study provided a guideline for the assessment of CO2 intensity and the technical information for long-term GHG emission projection in CTI which could be applied in worldwide.

Suggested Citation

  • Kannaphat Chuenwong & Boonrod Sajjakulnukit & Siriluk Chiarakorn, 2019. "GHG emission projection and mitigation potential for ceramic tableware industry in Thailand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 419-434, March.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:3:d:10.1007_s11027-018-9819-7
    DOI: 10.1007/s11027-018-9819-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9819-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9819-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui Hu & Philip Kavan, 2014. "Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Hu & Xiang Li & Anh Dung Nguyen & Philip Kavan, 2015. "A Critical Evaluation of Waste Incineration Plants in Wuhan (China) Based on Site Selection, Environmental Influence, Public Health and Public Participation," IJERPH, MDPI, vol. 12(7), pages 1-22, July.
    2. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    3. Abbas, Qamar & Hongxing, Yao & Shahbaz, Muhammad & Ramzan, Muhammad & Fatima, Sumbal, 2024. "Metallic minerals production and environmental sustainability in China: Insights using ARDL bounds testing and wavelet coherence approaches," Resources Policy, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:3:d:10.1007_s11027-018-9819-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.